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Preparing first-time slope failures hazard maps:
from pixel-based to slope unit-based

Abstract In this work, we present a novel quantitative geo-
graphical information system-based procedure to obtain the
magnitude (area) and frequency of medium to large first-time
shallow slope failures. The procedure has been set up at the
Barcedana Valley, in the Tremp Basin (Eastern Pyrenees). First,
pixel-based susceptibility classes were defined using a slope
stability index obtained with the physically based model
SINMAP. The frequency calculated from the number of first-
time failures recorded during the last 60 years was then
assigned to each susceptibility class. We devised a procedure
to estimate the size of potential failures by means of the aggre-
gation of pixels within the boundaries of morphological slope
units, optimized for the purpose. Finally, the landslide hazard
was prepared using the magnitude-frequency matrix. Results
show that a proper pixel clustering has been carried which
avoids the generation of small groups of pixels with different
susceptibility degrees within the same slope unit. For a given
hill slope, the area of the cluster of pixels depends on the size of
the slope unit, which is not unique as it depends on the crite-
rion used to delineate them. Therefore, the latter is a key factor
in the final results. In this study, we validated our results with
the size distribution of the observed landslides. The methodol-
ogy presented in this work can be applied using any suscepti-
bility assessment method with a pixel-based output.

Keywords Landslide susceptibility mapping . Landslide hazard
mapping . Slope units . SINMAP . Physically-based

Introduction
Magnitude and frequency are the two key factors for a quantitative
assessment of landslide hazard (Dai et al. 2002; Fell et al. 2005;
Picarelli et al. 2005; Van Den Eeckhaut et al. 2007; Corominas et al.
2014; Lari et al. 2014; Vranken et al. 2014). Thus, knowledge of the
probability of occurrence of landslides of a given magnitude is
mandatory to obtain landslide hazard maps. In this work, the
landslide magnitude is expressed as the area (number of pixels)
affected by the slope failure.

The concept of intact slopes is not straightforward as strictly
speaking, they do not exist in nature: evidences of slope processes
acting in the past are not present after a few years due to the
erosive cycle. From a geotechnical point of view, a slope can be
considered as intact if it mobilizes peak strength conditions.
Geomorphologically speaking, intact slopes display undisturbed
strata and show consistent dip angles in contrast with existing
landslide bodies. The latter can be characterised by undulated or
hummocky ground surface, presence of scarps, open cracks, tilted
trees and disturbed soils and rocks. The stability of intact slopes
can be assessed by means of physically based, statistical, analytical
or heuristic approaches (Aleotti and Chowdhury 1999; Dai and Lee
2002; Das et al. 2011; Ghosh et al. 2012). Some physically based
models calculate the safety factor (SF) that can be integrated in the

landslide hazard assessment (Wu and Abdel-Latif 2000; Frattini
et al. 2004; Haneberg 2004 Baum et al. 2005). Advanced ap-
proaches couple the hydrological model and the infinite slope
stability model and both can be implemented with various degrees
of sophistication, including either steady-state or transient condi-
tions (Montgomery and Dietrich 1994; Savage et al. 2004; Baum
et al. 2008; Godt et al. 2008; Salciarini et al. 2008; Rossi et al. 2013;
Alvioli et al. 2018). The first physically based models were two-
dimensional (2D), but nowadays, three-dimensional (3D) slope
stability models exist (Marchesini et al. 2009; Jia et al. 2012;
Mergili et al. 2014; Raia et al. 2014; Alvioli and Baum 2016). Many
physically based models are implemented within a GIS, or are
supported by GIS processing, and calculate the SF for single pixels.
Meaningful combinations of the spatially distributed SFs allow to
define 3D geometries of instable portions of the terrain (e.g.
Marchesini et al. 2009) or evaluate the SF for the most critical slip
surfaces (e.g. Jia et al. 2012; Mergili et al. 2014). More sophisticated
models incorporate a probabilistic package that calculates the
probability of failure (probability of SF being smaller than unity)
by evaluating the different slip surfaces as well as the uncertainty
in the input values (e.g. Pack et al., 1998; Rossi et al., 2013). Another
example, for the case of shallow landslides, is the integration of the
TRIGRS model (Baum et al., 2008; Alvioli and Baum, 2016) with
SCOOPS3D (Reid et al. 2015), where the latter uses the time-
dependent infiltration model results as calculated by the former
and performs an additional 3D analysis (Tran et al. 2018), provid-
ing an overall 3D, time-dependent analysis. Physically based
models work at pixel level by design, and the interpretation of
the results at slope level needs to be addressed in a meaningful way
(e.g. Alvioli et al. 2014; Bellugi et al. 2015). Physically based models
also require higher resolution data, with respect to statistical ones,
typically geotechnical parameters of the soil. Such data is often
difficult to obtain on large areas, and for this reason, probabilistic
approaches have been introduced, for example using TRIGRS in
Raia et al. (2014) and Salciarini et al. (2017). Another limitation
posed by the physically based models accounting for water infil-
tration is the dependence on the initial water table depth (Baum
et al. 2005), which is difficult to estimate and needs to be measured
on the field. An evaluation of the different options for data gath-
ering for physically based models, specifically for TRIGRS, was
recently described in Yatheendradas et al. (2019).

The SF output of physically based models can be transformed
into a stability index (SI), for example by means of the Monte
Carlo method, providing multiple SF analysed statistically. The SI,
which can be used as a proxy for susceptibility (spatial probability
of landslide occurrence) due to its statistic component, can be
empirically converted into annual probability by correlating it
with the temporal frequency of observed failures: the larger the
temporal window of the inventory, the better the conversion will
be. However, the SI resulting from 2D physical models is pixel-
based, and if one does not resort it to explicit 3D methods, it is
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difficult to go beyond the pixel-based scale. In other words, a main
restriction of the pixel-based analysis is the lack of correspondence
between the landslide size and the pixel size. In many landslide
susceptibility maps carried out in clayey formations, the size of the
landslide often does not match to the size of the pixel (landslides
are either bigger or smaller than the pixel size) (e.g. Baum et al.
2005; Salciarini et al. 2008; Pradhan et al. 2018) and this may not
reflect the actual occurrence of the slope failures.

Thus, when analysing a pixel-based output from a physically
based model, one faces two main challenges:

1. Assessing the susceptibility of intact slopes.
2. Assessing the magnitude of failures bigger than the pixel size.

A procedure to overcome this restriction is by defining the
physical boundaries of the hill slope where the potential failure
can occur (e.g. Guzzetti et al. 1999, 2006). In this case, any analysis
carried out affects the whole slope unit in terms of uniform spatial
probability of landslide occurrence within the same slope unit, and
therefore, this approach is difficult to carry out in large slopes
showing variable steepness as the failure may only affects a small
portion. In this work, we have assumed that failures cannot be
bigger than the physical boundaries of the hill slope. We have
devised a procedure to obtain the area of failures bigger than the
pixel size and constrained by physiographic boundaries. The latter
are commonly referred to as terrain units (TUs).

Terrain units
TUs are portions of terrain with similar geological and geomor-
phological features which divide a region in portions that have a
set of common properties, different from the adjacent ones, across
definable boundaries (e.g. Hansen 1984; Lee and Evangelista 2006;
Pavel et al. 2008). In other words, they maximise the internal
homogeneity and the between-unit heterogeneity (Jia et al. 2012;
Alvioli et al. 2016). TUs embody the geomorphologist assumption
that both geological and geomorphological features properly de-
scribe the boundaries resulting from the relationship between
materials, landforms and processes. Since landslides occur in sites
with a certain slope gradient, the failure is constrained between the
highest and the lowest part, i.e. between the divide and the drain-
age line of a given slope, respectively.

Slope units (SUs) are a particular type of TUs causally related to
the hydro- and geomorphological conditions and processes that
shape natural landscapes, including landslides. Each SU is
encompassed by a drainage (or valley) and a divide line (Carrara
1988; Carrara et al. 1991, 1995, 2003; Giles 1998b; Guzzetti et al. 1999;
Xie et al. 2004; Komac 2006; Guzzetti et al. 2006; Copons and
Vilaplana 2008; Reichenbach et al. 2014). SUs are a formalization
of what geomorphologists describe as slopes, and failures take
place within their boundaries (Guzzetti et al. 2000).

SUs are known to be the most appropriate terrain partitioning
for hydrological and geomorphological studies, including land-
slide susceptibility modelling and zonation (Carrara et al. 1991,
1995; Guzzetti et al. 1999, 2006) and landslide hazard assessment
(Xie et al. 2003; Giles 1998a, b; Van Den Eeckhaut et al. 2009; Jia
et al. 2012). In the literature, the use of grid cells is often preferred
to other types of mapping units, including slope units. This is

largely due to the simplicity of using regular grid cells, in conjunc-
tion with a gridded digital elevation model, with respect to irreg-
ular polygons. Most of the existing GIS software can perform
complex operations on a pixel basis, while calculating quantities
within slope units requires some additional effort. Moreover, the
very delineation of slope units is not straightforward, especially on
large areas. Nevertheless, using a meaningful slope unit delinea-
tion has several advantages for a number of applications. Signa-
tures of geomorphological processes are uniform within slope
units, and maps produced on the basis of slope units are inher-
ently more suitable for land use planning and hazard manage-
ment, since their boundaries are recognizable in the field.
Moreover, for the specific purpose of this study, pixels are not
suitable to define the magnitude of potential landslides, simply
because the stability model does not provide a means to go beyond
the pixel-based description. Hence, SUs are a valuable tool to
assess the magnitude of failures larger than the pixel size.

Beyond pixel-based susceptibility using slope units
Figure 1a shows the results of a pixel-based landslide susceptibility
analysis. Although one is not entitled to extrapolate the result
outside of each pixel’s spatial domain, the presence of a cluster
of high-susceptibility pixels (orange colour) suggests that, in case
of failure, it will involve several pixels at a time. As the analysis is
performed at pixel scale, there is no connection with the other
adjacent pixels as it happens in nature, the stress state of a portion
of terrain actually being modified by changes in the stress state of
an adjacent one, which can lead to instability.

A rough way to account for failures larger than a pixel is by
assigning a unique susceptibility value to the whole SU. This can
be done, for instance, by averaging the susceptibility values within
the SU polygons (Fig. 1b) and assuming that the size of the SU
defines the size of the potential failure. In the example of Fig. 1b,
however, two main inconsistencies are observed: the average sus-
ceptibility obtained is low (yellow) and hides the fact that part of
the slope is susceptible to fail. Moreover, if the spatial extent of the
potential failure is smaller than the SU (orange in Fig. 1a), the area
of the latter is not a proper proxy of the possible slope failure
magnitude.

In order to overcome the disadvantages of averaging, we intend
to work directly with the area of the pixel clusters defined within
the same SU, which will be used as a proxy for the magnitude of
the potential failure. The size of the clusters of pixels with the
highest-susceptibility values are expected to collectively furnish a
proxy of the estimation of the magnitude of a potential landslide
in the SU: we expect that failures of different magnitude will take
place within the clusters according to their probability of occur-
rence. To this end, a process of pixel clustering has to be
developed.

Landslide hazard mapping
Landslide hazard can be expressed as the frequency of landslides
of given magnitude within a certain area and a given time period;
it is evaluated through different methods depending on the scale of
analysis (Fell et al. 2008). According to the suggestions given by
Fell et al. (2008), landslide hazard zoning assigns an estimated
frequency to the potential landslides resulting from susceptibility
mapping. Frequency is combined with the magnitude of potential
instabilities to map landslide hazard by means of magnitude-
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frequency (MF) relations expressed as an MF matrix. Usually,
these matrices are prepared for each landslide mechanism
(Strozzi et al. 2013) and the hazard degree results from the com-
bination of both input parameters. For instance, frequent small-
size landslides are not ranked as highly hazardous because their
intensity and the subsequent damage are low and vice-versa. This
topic has been widely discussed in countries such as Switzerland,
Italy as well as Australia, among others, where custom methodol-
ogies have been developed (AGS 2007; Kranitz and Bensi 2009;
Raetzo and Loup 2009) and implemented elsewhere (e.g. Cardinali
et al. 2002, 2006; Raetzo et al. 2002; Sterlacchini et al. 2007; Posch-
Trözmüller 2010; Strozzi et al. 2013).

Landslide hazard can be expressed in qualitative or quan-
titative terms. Usually, qualitative assessment includes subjec-
tive criteria of experts and, therefore, a certain subjectivity in
the interpretation of the threat posed by different landslides.
MF matrices are usually presented in qualitative terms as low,
medium, high and very high. However, if frequency and mag-
nitude can be quantified, the different degrees of hazard can
be quantified as well.

The objective of this work is to evaluate the potential for
large slope failures (translational slides) of the intact slopes
by applying a deterministic model in the Barcedana Valley
(Eastern Pyrenees, Spain) and using the area of the most
susceptible pixel clusters as a proxy of the magnitude. The
details of the methodology and the study area are given in the
following sections.

Study area and data

General setting
The study area is located in the Barcedana Valley (or Basin), in the
southern part of the Tremp-Graus Basin, which is an erosive
depression within the South Central Structural Unit (SCU)
(Seguret 1972). The SCU includes, from north to south the Boixols,
Montsec, and Sierras Marginales thrusts. The Tremp-Graus basin
is located north from the Montsec thrust sheet and forms a wide
syncline. Materials filling the Tremp-Graus basin are mostly
claystones and sandstones from the Upper Cretaceous/
Palaeocene (Garumnian facies) and limestones and conglomerates
from Eocene-Oligocene ages.

Geographically, the Tremp basin is located in the Eastern Pre-
Pyrenees (Spain), about 170 km northwest of Barcelona. The
Barcedana Valley has an extension about 25 km2 and an altitude
ranging from 400 to 650 m asl. It bounds the Montsec Range to the
south and the Llimiana Range to the north. Surrounding summits
have a maximum elevation of 1700 m asl (Fig. 2a).

Typical Mediterranean climatic conditions prevail in the area
with intense storms at the end of spring and in the beginning of
autumn and dry periods in January–February and early summer.
The mean annual precipitation is about 600–700 mmmostly in the
form of high-intensity storms (Novoa 1984), some of them
reaching up to 100 mm in 10 h (approx.), and the mean annual
temperature is 12.5 °C with a mean maximum temperature of
27.6 °C and a mean minimum temperature of 0.4 °C.

Geological description
The Llimiana Range is formed by well-cemented materials from
Oligocene: sandstones, conglomerates, reddish and grey lutites,
limestones with alveolines and marls and lutites. To the south,
the Montsec Range exhibits also well-cemented materials from
Garumnian Facies: Micritic limestones, calcarenites and lutites of
Fm La Posa (Maastrichtian); Sandstones and calcarenites of Fm
Gresos d’Areny (Maastrichtian) and limestones, calcarenites and
sandstones of Campanian–Maastrichtian age (Fig. 2b). Between
both ranges, within the valley, a big extension of colluvium can
be found. It is mainly composed of clays with angular sandy and
silty clasts of Holocene age. Garumnian deposits are also present:
red lutites, paleosoils, sandstones and gypsum of Selandian–
Thanetian age, as well as micritic limestones, calcarenites and
lutites of Fm La Posa (Maastrichtian).

Commonly, Garumnian deposits of the central Pre-Pyrenees are
divided in three main parts from bottom to top (Rosell et al. 2001):
the Lower Red Garumnian (red lutites), the Vallcebre Limestones
(intermediate limestone) and the Upper Red Garumnian (red
lutites). Another fourth transitional level called Grey Garumnian
is added at the base:

1. Grey Garumnian: from the diagenetic point of view, it is
completely different of the other typical Garumnian materials.
It is made of grey lutite, lignite, sandstone and interbedded
limestone layers. It is of Maastrichtian age.

Susceptibility

Medium

Low

Very low

Contour line

Slope unit

SU1 SU2 SU1 SU2

a b

0 5025
Meters

Fig. 1 a Pixel-based susceptibility in two sample SUs (SU1 and SU2). b SU-based susceptibility, after averaging, within the same SUs
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2. Lower Red Garumnian (red claystones): it is made of red
silty materials with interbedded levels of lenticular fining
upward sandstones. Between silty deposits, there exist thin
layers of fine-grain sandstone with cross lamination. These

silty deposits are often affected by joints and present calcar-
eous nodules. The roof of the Lower Red Garumnian level
has been defined as the limit between Mesozoic and
Cenozoic.

b

c

Study area

Barcedana Basin

a Llimiana range

Montsec range

Fig. 2 Study area (a). Lithologic units of the Barcedana valley (b) with the reclassified geomechanical units (modified from Georisc S.L.) and the identified first-time slope
failures with field surveys and orthophotos (c): Qco: Colluvial deposits. Clays with angular cobbles. Holocene. Qv0-1: Angular clasts, sands or silt. Holocene. PEglm2:
Sandstones, grey and reddish lutites and conglomerates. Fm Montllobar. Lower Eocene. PEglm1: Sandstones, conglomerates and reddish lutites. Fm Montllobar. Lower
Eocene. PEmg1: Sandstones within the Fm Artés. Upper Eocene. PPEca: Limestone with alveolines. Fm Cadí-Àger. Ilerdian. PPEmg: Marls and lutites. Fm Fígols. Ilerdian.
PPlg: Red lutites, paleosoils, sandstones and gypsum. Upper part of the Tremp Group. Garumnian Facies. Selandian-Thanetian. KMlg: Red lutites, sandstones and paleosoils.
Tremp Group. Garumnian Facies. Maastrichtian. KMcp: Micritic limestones, calcarenites and lutites. Fm La Posa. Garumnian Facies. Maastrichtian. KMga: Sandstones and
calcarenites. Fm Gresos d’Areny. Maastrichtian.
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3. Vallcebre Limestones (intermediate limestone): in the Tremp
Basin, they exhibit several micritic calcareous sections, fre-
quently recrystallised, of Maastrichtian-Danian age.

4. Upper Red Garumnian (red claystones): it is the most expan-
sive level of Garumnian facies. It is of Thanetian age and may
contain gypsum and anhydrite nodules. Well-developed evap-
oritic lentils can be found as well.

According to the geological map, Rosell et al. (2001) and field
observations, the cartographic units from Garumnian facies, out-
cropping in the Barcedana Valley, have been classified as follows:

1- PPlg, which in some parts is covered by Qco, corresponds to
the Upper Red Garumnian

2- KMlg corresponds to the Lower Red Garumnian
3- KMcp corresponds to the Gray Garumnian.

Vallcebre limestones do not outcrop in Barcedana Valley as
they are either covered by quaternary colluvium or they are not
present in this part of the basin. Materials from the Red
Garumnian Facies (PPlg and KMlg) are the main responsible for
the several numbers of landslides occurred, especially, during
rainy events.

The most common type of landslides in the Tremp Basin
are translational slides developed in the wide slopes of the
region on clayey formations (Figs. 2b, c and 3a, b). These are
low-plasticity claystones which include gypsum veins. Despite
affecting large surface areas (< 5000 m2 but up to more than
20,000 m2), they are relatively shallow because the sliding
surface develops at the contact between the disturbed
(weathered) and the intact claystone. Most of the failures
show depths ranging between 1 and 5 m. Locally, in case of
slopes next to entrenched streams, the steep slopes may also
generate rotational failures (Fig. 3c). Therefore, in terms of
area, they can be considered medium to large landslides but
not in terms of thickness. These landslides are mostly self-
contained and short runout (e.g. Carrara et al. 2003; Guzzetti
et al. 2005). The debris sometimes accumulate in hollows and
drainage ways and may eventually turn into slow-moving
earthflow. Contrary to the typically clay formations, slope
failures in the Tremp basin may be triggered due to short-
lasting very intense rainfall events. The reason is that the
most superficial part of the claystones has been unloaded by
the erosion and presents cracks and macropores (Fig. 3b)
(Corominas 2001, 2006). Furthermore, volumetric strain and
cracks usually appear within the first meters below the
ground surface due to moisture changes, thus favouring rain-
fall infiltration.

Data
Multiple remote-sensing images and maps acquired from various
sources (Table 1) have been used to create a map of geomechanical
units and landslides (Fig. 2c). A high-resolution DEM with a grid
cell size of 5 m, a geological map and 11 orthophotos have been
freely downloaded from the Catalonian Geological survey (ICGC).
The aerial images are true-colour georeferenced orthophotos with
a pixel resolution of 50 cm covering the period from 1956 to 2013.

The landslide map has been carried out through field surveys
and stereoscopic analysis of orthophotos. Regarding the geological
map, firstly, we used a 1:25,000 scale geological map prepared by
the Catalonian Geological Survey (ICGC) and we checked it in the
field at 1:10,000 scale. The geomechanical units were defined by the
ICGC. The reclassification consisted in merging formations with
similar lithology. As a result, six geomechanical units have been
defined (Table 2) to carry out the physically based slope stability
analysis. The hard rock unit (unit 1) outcrops at the southern part
of the Barcedana Valley (the Montsec north face). It is mainly
composed of well-cemented conglomerates and competent sand-
stones and limestones. During the field campaigns, we observed
some large rockfalls that were generated in this unit. Interbedded
weak and hard rocks (unit 2) outcrop at the northern of Barcedana
Valley. They consist of competent limestones with alveolines and
well-cemented conglomerates with interbedded sandstones and
lutites. In some parts of the valley, they are quite fractured and
frequently affected by rockfalls as well. The weak rock unit (unit 3)
outcrops in the central part of Barcedana Valley, in the quasi-
vertical gully walls and composed of claystones and siltstones.
Locally, sandstones can be predominant. In other parts of the
valley, it appears as a less competent material which, in some
cases, can be disaggregated by hand. The coarse and fine colluvi-
um units (units 4 and 5, respectively) are present in the central
part of the Barcedana Valley. Coarse colluvium is mostly com-
posed of angular clasts (centimetre and decimetre in size) embed-
ded in a silty matrix, it is well graded and shows a chaotic internal
structure. Fine colluvium is the most extended and landslide-
prone material in the Barcedana Valley. It is constituted by silty
clay with low plasticity and is responsible for a high number of
slope instabilities. The last unit, defined as slide material (unit 6),
is found in the central part of the Barcedana Valley. It consists of
soil deposits showing well-graded chaotic texture, as well as other
landslide features such as presence of scarps, open cracks, hum-
mocky ground and tilted trees. It is mainly composed of clayey
and silty materials as well as clasts of several sizes (from
centimetre to decimetre size). These materials present residual
strength conditions (Canales 2011; Montero 2011; Oliveras 2011).
Colluvium and old landslide deposits often overlay the claystones
of the Garumnian facies (unit 3).

The inventory of first-time failures has been prepared by
stereoscopic analysis of the orthophotos and direct field map-
ping (Fig. 2c). During the stereoscopic analysis, we first selected
the orthophotos from the ICGC with sufficient resolution
(Table 1) to identify the landslide bodies and indicators of
activity, such as scarps and cracks. These observations were
confirmed during the field trips where we could also identify
other indicators of activity like fallen and disturbed trees, pres-
ence of water, intact and disturbed bedding, translational and
rotational platforms and structures with slightly or severe pa-
thologies. A total of 17 first-time large slope failures have been
identified for the period 1956–2013 (Table 3). The thickness of
the landslides has been estimated in less than 5 m. They are
mostly translational slides with one case out of 17 showing a
rotational component (Table 3). These types of landslides in the
study area are typically triggered by short-lasting intense rain-
falls due to the presence of cracks. To be certain of the first-
failure character, we checked that none of the mapped land-
slides were present in the older set of orthophotos (1956). It is
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worth noting that the lack of images with sufficient quality from
1956 to 1990 may lead to the omission of events occurred during
this period due to the erosive cycle. The area of the failures
range from 816 to 27,700 m2, and they mainly occurred on fine

colluvium (53%), followed by coarse colluvium (29%) and weak
rock unit (18%). Such landslides have occurred in quite gentle
slopes, ranging from 8° to 37° with a mean slope angle of 17°
(Canales 2011).

Fig. 3 Field examples of landslides occurring in the Garumnian formation (Upper Cretaceous-Lower Palaeocene): typical shallow translational slides present in the study
area (a, b) and rotational failures locally present in steep slopes next to entrenched streams (c). The presence of cracks and macropores facilitate rainfall infiltration (d)

Table 1 Data used in this research. The aerial images are true-colour georeferenced orthophotos. Shadows or clouds masking the study area are not present

Document Format Year Scale Pixel resolution Source

Digital elevation model Digital 2014 – 5 m/pixel ICGC

Orthophoto

1956 Digital 1956 1:33,000 50 cm ICGC

1990 Digital 1990 1:25,000 50 cm ICGC

1993 Digital 1993 1:25,000 50 cm ICGC

1997 Digital 1997 1:5000 50 cm ICGC

2003 Digital 2003 1:5000 50 cm ICGC

2005 Digital 2005 1:5000 50 cm ICGC

2007 Digital 2007 1:5000 50 cm ICGC

2008 Digital 2008 1:5000 50 cm ICGC

2009 Digital 2009 1:5000 50 cm ICGC

2011 Digital 2011 1:5000 50 cm ICGC

2013 Digital 2013 1:5000 50 cm ICGC

Geological map Digital 2007 1:50,000 – ICGC

Geomechanical units map Digital 2009/2013 1:5000 – Georisc S.L.

Landslide inventory map Digital 2009/2013 1:5000 – Georisc S.L.
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Methodology
Establishing a relation between the outcomes of physically based
models, as the one adopted in this work, and our ultimate aim of
preparing hazard maps for large first-time failures that exceed
the pixel size of 5 m (DEM resolution) consists of several steps.
The first step of our method is the susceptibility assessment
through the calculation of the SI for each pixel using a slope
stability model coupled with a hydrological model (SINMAP)
(Pack et al. 1998). Then, to constrain and to calculate the size
of the potential failures, larger than the pixel size, we delineated
SUs using an existing software and re-classifying the SI map
within each SU polygon, using a novel pixel clustering proce-
dure. The ultimate goal of our approach is to consider the sizes
of the high-susceptibility pixel clusters as a measure, or a proxy,
of the magnitude of potential landslides in intact slopes. The
temporal component of landslide hazard (i.e. frequency) was
estimated using the probability of the first-time failures from
the inventoried instabilities. Eventually, hazard was calculated
using a MF matrix considering the mentioned magnitude and
frequency.

Susceptibility assessment using a physically based model
We used the physically based model SINMAP (Pack et al. 1998), a
software developed for the analysis of slope stability at regional
scale in a GIS environment. The software is based upon the infinite
slope stability model coupled with a simple hydrological model,
TOPMODEL (Beven and Kirkby 1979), which calculates the topo-
graphic wetness index w for each pixel of a digital elevation model
(DEM). It considers the Mohr–Coulomb criterion to calculate the
SF as follows:

FS ¼
Cdl þ cosθ 1−w

ρw
ρs

� �
tanφ

sinθ
; ð1Þ

in which Cdl is the adimensional cohesion, ρw [kg/m3] is the water
density, ρs [kg/m

3] is the soil density, φ [°] is the friction angle, and
θ [°] is the slope angle. The adimensional cohesion is given by

Cdl ¼ C
h ρsg

; ð2Þ

where C [N/m2] is the soil cohesion, g = 9.81 [m/s2] is the acceler-
ation of gravity, and h is the height [m] of the soil column in the
given pixel.

The hydrological model included in SINMAP calculates the
wetness index w starting from a few assumptions:

1. Surface runoff follows topographic gradient. This assumption
allows calculating the specific catchment area at each pixel as:

a ¼ A
b
; ð3Þ

where a is the specific catchment area [m], A is the contributing
area [m2], and b is the unit contour length (pixel size) [m].

Table 2 Simplified geomechanical units defined as the basis for the landslide hazard assessment

Unit code 1 2 3 4 5 6

Geomechanical
unit

Hard rock Interbedded weak
and hard rocks

Weak rock Coarse
colluvium

Fine
colluvium

Slide
material

Lithologies
(simplified)

Limestone,
conglomerate
and massive
sandstone

Sandstone,
limestone,
conglomerate
interbedded with
argillaceous rocks

Claystone, siltstone,
marl and either
thin or poorly
cemented
sandstone

Coarse
colluvium
with
clayey
and silty
matrix

Fine
colluvium
with
clayey
and silty
matrix

Fine
colluvium
with
clayey
and silty
matrix

Table 3 Main characteristics of the first-time slope failures in the study area during 1956–2013

Landslide Year Area [m2] Geomechanical unit Landslide Year Area [m2] Geomechanical unit

1 2005 816 Weak rock 10 2013 11,550 Fine colluvium

2 1990 1053 Weak rock 11 2003 15,110 Coarse colluvium

3 2013 1091 Weak rock 12 2003 15,120 Fine colluvium

4 2013 1229 Fine colluvium 13 1990 19,590 Coarse colluvium

5 2005 2961 Fine colluvium 14 2011 23,700 Fine colluvium

6 1990 7002 Coarse colluvium 15 1997 27,700 Fine colluvium

7 1990 7153 Fine colluvium 16 1997 28,450 Coarse colluvium

8 1993 8849 Fine colluvium 17 1990 52,010 Coarse colluvium

9 2009 11,540 Fine colluvium
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2. Lateral discharge (q) at each point is in equilibrium with a
steady-state recharge, R [m/h].

3. The capacity for lateral flux at each point is given by

Tsinθ; ð4Þ

where T [m2/h] is the soil transmissivity defined as the product of
the permeability, K [m/h], and the soil thickness h [m].

Considering assumptions 1 and 2 above, the lateral discharge q
[m2/h] reads as follows:
q ¼ Ra: ð5Þ

Considering assumption 3, the wetness index w can be calcu-
lated as follows:

w ¼ min
Ra

Tsinθ
; 1

� �
: ð6Þ

SINMAP does not require a single value for the input parame-
ters, and it also accepts a range of values, in case the parameter
values are not uniform or the exact value is not well constrained.
This uncertainty about the input parameters permits to use the
binary deterministic approach (FS = < 1, failure; FS > 1, non-fail-
ure) as a proxy for susceptibility (probability of having a landslide
in a given area) through the stability index (SI). For FSmin > 1, the
SI is the FSmin (SI = FSmin). For areas where FSmin < 1, the SI = Prob
(FS > 1). In case FSmax < 1, then SI = Prob (FS > 1) = 0. The numer-
ical values of input parameters used for applying SINMAP in this
research (Cdl, φ and T/R) are listed in Table 4 and discussed in
more detail in Domènech (2015). They have been obtained from
different field campaigns carried out in the study area (Canales
2011; Montero 2011; Oliveras 2011; Domènech 2015) and from the
literature (Coduto 1999; González de Vallejo et al. 2002). For each
unit, the same h soil value has been assigned to all the pixels where
it outcrops. Pixels where units 1 and 2 outcrop correspond to hard
rock and interbedded weak and hard rock (Table 2), and they
require another specific analysis for rockfalls.

Finally, the SI is reclassified into four susceptibility classes of
increasing probability of failure according to the observations
made in the field. To this aim, the classification of the SI values
has been modified from that proposed by Pack et al. (2005), using
the following classes: 0 < SI < 0.25 (high susceptibility); 0.25 < SI <
1.0 (medium susceptibility); 1.0 < SI < 1.5 (low susceptibility); 1.5 <
SI < 10 (very low susceptibility). Results of SINMAP have been
validated by a receiving operating characteristics (ROC) analysis
(Fawcett 2006).

Parametric delineation of slope units
Although a unique SU size for a given hill slope does not exist, in
mountainous areas, SUs can be easily identified, as compared to
more gentle slopes areas. In the latter, the topography has not been
sufficiently shaped by the erosive processes and, therefore, the
drainage lines and the subsequent catchments to be later
partitioned into SUs are more difficult to delineate and several
possibilities exist. In the latter, it might happen that the

morphodynamic processes trespass the SU limits. In such cases,
it has to be decided whether the landslide extension prevails over
the SU or vice versa.

Our starting point is that the observed first-time slope failures
in the field should not exceed the size of the SU and conversely,
they should not be too small in relation to the size of the SU. To
this end, we have first carried out a preliminary delineation of SU
to achieve a correspondence between the size of the SU generated
and the size of the observed slope failures.

SUs can be drawn manually, which is an intrinsically error-prone
and subjective procedure, or using specialized software (Xie et al. 2004).
The basic ingredient to obtain a meaningful SU partition is a hydro-
logical tool to delineate both drainage and divide lines (Fig. 4): an SU is
defined from the catchment, which is generated using a drainage
network characterized by a given value of flow accumulation threshold.
Such flow accumulation threshold is also known as contributing area
threshold (CAT). Conversely, pixels with flow accumulation value
smaller than the CAT will not be considered as part of the drainage
line. One of the existing approaches to draw SUs is the one described by
Xie et al. (2003), who used the Arc Hydro tool (David 2002) to reverse
the DEM, with the effect of exchanging the original drainage lines into
divides and vice-versa. On the other hand, Alvioli et al. (2016) used the
algorithm of Metz et al. (2011) to define simultaneously drainages and
divides and considered the average aspect direction of each portion of
terrain encompassed by such landscape boundaries as a measure of
homogeneity, as required by the very definition of SUs.

In this work, we used the software r.slopeunits of Alvioli et al.
(2016) for SU delineation. They assumed that no unique SU delin-
eation exists, since there is an inherent dependence on the scale
and nature of the process under investigation. Non-univocity
implies no definite SU size and different degrees of homogeneity
of aspect, and other morphological properties, within each SU. The
r.slopeunits software accepts a number of input parameters, which
control the size and shape of the output SU map. The numerical
values of the input parameters must be provided by the user based
on his/her expertise or on some objective parameter selection
method. The SUs boundaries delineation also depends on the
DEM resolution (Mashimbye et al. 2014; Schlögel et al. 2018). The
algorithm of Alvioli et al. (2016) is implemented in the GRASS GIS
(Neteler and Mitasova 2008) module r.slopeunits freely available
from http://geomorphology.irpi.cnr.it/tools/slope-units. In addi-
tion to the DEM, relevant inputs of the method implemented by
the software are two parameters that drive the SU delineation
process: (i) the circular variance, c, representing the degree of
slope aspect homogeneity required within each SU; (ii) the mini-
mum area, a [m2], i.e. the threshold size under which a polygon is
considered as an SU. Other input parameters are required for
using the software; their role in the SU delineation is more tech-
nical and it is described in detail in Alvioli et al. (2016); thus, we
focus here only on the determination of suitable c and a parameter
values, which are directly related to the local terrain morphology.

The r.slopeunits software has been run for many combinations
of the values of the input parameters a and c, namely c = (0.01,
0.05, 0.1, 0.15, 0.2, 0.4) for the circular variance threshold and
a = (5000, 10,000, 25,000, 50,000, 100,000, 200,000, 500,000) m2,
which determined 42 sets of SU, obtained from all the possible (a,
c) combinations. The choice of the ranges of variation of input
parameters was not dictated by specific criteria, but only on
heuristic judgement based on a brief preliminary analysis, and
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they are similar to the ones used in previous work (Alvioli et al.
2016; Bornaetxea et al. 2018; Schlögel et al. 2018). Each SU delin-
eation is a cover of the study area, with polygons of different

shapes and sizes, but all of them represent valid hydrological
subdivisions of the terrain. For example, it is intuitive that the size
of SU is larger for sets produced using larger values of the param-
eter a. Similarly, larger values of the parameter c require SU with
large terrain variability that is likely found within larger polygons.
A finer control of the output of the r.slopeunits software as a
function of the whole set of input parameters is virtually impossi-
ble, since it depends from the complex interplay of individual
parameter values and local terrain characteristics.

Re-assessment of susceptibility values within the SU: magnitude of the
potential failure
Results of the SINMAP are in terms of a pixel-by-pixel mosaic of
different SI values (Fig. 5a), which are not suitable to our goal
which is the generation of larger clusters of pixels that may explain
the occurrence of big failures. (Fig. 5b).

The SI map produced by SINMAP was treated as follows. The
first step is to avoid the formation of pixel mosaics that are
difficult to interpret. The isolated pixels located within a given
SU are reclassified to the predominant class of the adjacent pixels.
Furthermore, clusters of pixels involving an area smaller than
800 m2 have also been reclassified to the neighbouring

Table 4 Parameters used in the SINMAP slope stability simulation for each geomechanical unit

Unit code 1 2 3 4 5 6

C (min) [MPa] 19.62a 2.45a 0a 0b 0c 0c,d,e

C (max) [MPA] 39.24a 39.24a 0.2a 0b 0.058c 0c,d,e

h soil [m] 0.01i 0.01i 5b 5b,e 5c,e 5c,d,e

ρs [kg/m
3] 2600f 2600f 2500f 2300f 2200c 2200c,d

g [m/s2] 9.81 9.81 9.81 9.81 9.81 9.81

K min [m/s] 1 * 10–12a 1 * 10–11 a 1 * 10–10 a 1 * 10–9 f 1 * 10–10f 1 * 10–10f

K max [m/s] 1 * 10–6 a 1 * 10–5 a 1 * 10–5 a 1 * 10–4 f 1 * 10–5f 1 * 10–4f

T min [m2/s] 1 * 10−14 1 * 10−13 5 * 10−10 5 * 10−9 5 * 10−10 5 * 10−10

T max [m2/s] 1 * 10−8 1 * 10−7 5 * 10−5 5 * 10−4 5 * 10−5 5 * 10−4

R min [m/s] 6 * 10–9 h 6 * 10–9 h 6 * 10–9 h 6 * 10–9h 6 * 10–9h 6 * 10–9h

R max [m/s] 3 * 10–6 h 3 * 10–6 h 3 * 10–6 h 3 * 10–6h 3 * 10–6h 3 * 10–6h

Cdl min 79,623 9615 0 0 0 0

Cdl max 153,846 153,846 1.5 0 0.5 0

φ min [°] 40 30 30 18 18 9

φ max [°] 50 50 35 30 25 13

T/R min [m] 2 * 10−6 2 * 10−5 0.0865 0.865 0.087 0.087

T/R max [m] 0.004 0.037 18.5 185.2 18.52 185.2

a The information was obtained from González de Vallejo et al. (2002)
b Field observations
c Canales (2011)
d Montero (2011)
e Oliveras (2011)
f Laboratory tests peroformed by Domènech (2015)
g Coduto (1999)
h Rainfall data (Domènech 2015)
i Assumption

Divide line

Drainage line

Valley line

Slope units

0 5025
Meters

Fig. 4 SUs obtained by dividing the catchment using the drainage and the valley
line
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predominant class (we neglected the cluster sizes smaller than a
given value and replaced their values with the class with which the
removed cluster shared the longest linear boundary). The 800-m2

threshold was defined heuristically and corresponds to the smaller
landslide size observed in the study area. On the other hand, an
upper limit to the size of potential failures has been imposed by
constraining them within SU boundaries (a failure cannot be
bigger than the slope in which it is contained). Therefore, clusters
of pixels exceeding SU boundaries are not accepted.

It is important to stress that the outcome of the clustering
depends on the SU delineation: the SU number, size and bound-
aries are different for each of the considered (a, c) combination.
For the purpose of this work, the cumulated frequency of the
mapped first-time slope failures and the predicted ones (high-
susceptibility cluster of pixels) are used to optimize SU parameters
for better agreement with the distribution of the inventoried land-
slides. In such case, we are assuming that the landslide frequency
size distribution will not change over time, which is not completely
true, especially in areas affected by a strong disturbance such as
large earthquakes (Fan et al. 2018). Therefore, it is advisable to
update the model according to the local conditions. In this study, a
custom metric has been defined to establish which SU delineation
produces the best result. It is a positive calibration that calculates
the difference between measured and modelled values and is
defined as follows:

F a; cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i¼17

i¼1 Di−Pi a; cð Þð Þ2
q

; ð7Þ

where 17 is the number of observed first-time slope failures in the
study area within a 57-year period, Di is the ith point of the

observed distribution and Pi(a, c) is the corresponding ith point
of the predicted distribution obtained with the specified values of
(a, c), among the 42 different SU delineations.

It is worth noting that an optimal SU map with respect to aspect
segmentation can also be selected by finding the maximum of the
general-purpose objective function proposed by Espindola et al.
(2006) and adapted for dealing with aspect segmentation in Alvioli
et al. (2016).

Eventually, the magnitude of the potential failures was evaluat-
ed considering the size of the pixel clusters belonging to the
highest susceptibility class and located within the same SU, which
are the most likely to fail.

Assessing the probability of the first-time failures
The frequency of first-time failures for a cluster of pixels of a given
susceptibility class was calculated using the inventory of failures
identified both in the field and by a stereoscopic analysis of
orthophotos (Fig. 2c; Table 3). From the landslide inventory, we
calculated the number of first-time slope failures Ni in each sus-
ceptibility class over the total number of first-time slope failures
NT. Then, the ratio has been divided by the observed period of time
P and normalised by the area occupied by each susceptibility class
Ai. The frequency is expressed in terms of the number of first-time
slope failures per year and per square kilometre as follows:

Fi ¼ 1
P Ai

Ni

NT
ð8Þ

And it has been divided into four classes defined in qualitative
terms (e.g. very low, low, medium and high).

Fig. 5 Re-assessment of susceptibility values. a Pixel clusters of the same susceptibility, whose area is smaller than a given threshold previously defined. b Reclassified
clusters, merged within the bigger adjacent susceptibility values located within the same SU
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The hazard has been evaluated by combining the frequency and
magnitude, obtained in the previous sections, for each cluster of
pixels located within a given SU. For each combination, the degree
of hazard has been established and expressed in qualitative terms,
too. The number of classes and the definition of each one have
been established according to the Swiss Federal Guidelines (Raetzo
et al. 2002): very low, low, medium and high hazard. We assume
that the failure affects only the cluster of pixels.

Results and discussion
The output of SINMAP is presented in Fig. 6 together with the
mapped first-time slope failures. Visually, most of the failures
are found in the high-susceptibility classes, although some
sparse pixels of lower susceptibility are also present. Results
performed by the ROC analysis (Tables 5 and 6) indicate a good
performance of the model with an area under the curve (AUC)
of 0.87.

In our study area, large landslides are located in gentle slopes where
the delineation of the SUs is not trivial; therefore, to analyse the effect
of the SUs and their size, a few different cumulative frequency distri-
butions have been built for (i) the observed (mapped) first-time
failures, (ii) the raw high-susceptibility adjacent pixels predicted by
SINMAP before pixel clustering, (iii) the same high-susceptibility
adjacent pixels after pixel clustering without using SUs and (iv) using
SUs (the latter resulting in 42 different distributions). The correspond-
ing results are presented in Figs. 7 and 9. Figure 7 shows the cumulated
frequency distributions of the pixels and areas in the most susceptible
class, whose leftmost point is normalized to 100% by definition. In
general, the frequency size distribution of the susceptibility map
obtained directly from SINMAP includes a higher number of small
clusters, as expected (Fig. 7a). Concerning the pure clustering process
(without SUs), e.g. in the case of a flat area, where the topography of
the terrain does not constrain the landslide area, the trend is the same
as the results obtained directly from SINMAP (Fig. 7a). However, by

Fig. 6 Susceptibility map of the study area obtained with SINMAP and first-time slope failures identified during the period 1956–2011

Table 5 Validation of SINMAP by a receiving operating characteristics (ROC) analysis comparing the model results versus observed landslide presence. We converted the
probabilistic result to 0/1 using a threshold (column Th.). We show true positives, false negatives, true negatives and false positives, along with hit rate and false alarm
rate, as a function of the threshold. Plotting HR versus FAR one gets the ROC curve. A value of area under the curve (AUC) of 0.87 has been obtained by means of the R
function (https://www.rdocumentation.org/packages/verification/versions/1.42/topics/roc.area)

Th. TP FN TN FP HR FAR

0.0 3918 5818 341,606 45,009 1.000 1.000

0.1 9154 582 282,811 103,804 0.991 0.629

0.2 9224 512 272,700 113,915 0.986 0.585

0.3 9294 442 259,869 126,746 0.978 0.526

0.4 9335 401 244,834 141,781 0.971 0.461

0.5 9389 347 227,757 158,858 0.964 0.411

0.6 9458 278 208,275 178,340 0.959 0.367

0.7 9525 211 183,373 203,242 0.955 0.328

0.8 9603 133 160,538 226,077 0.947 0.295

0.9 9644 92 143,546 243,069 0.940 0.268

1.0 9736 0 0 386,615 0.402 0.116
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removing the clusters smaller than the given threshold (800 m2), the
frequency of the remaining ones increases considerably. Another
important factor is the size of the SUs. For clarity, a few SU sets
covering the whole range of frequency size distributions have been
selected (Fig. 7b). The SU sets denoted by “set 2”, “set 5”, “set 10”, “set
20”, “set 35” and “set 42” have been obtained respectively with the (a,
c) combinations: (10,000 m2, 0.01), (100,000 m2, 0.01), (25,000 m2,
0.05), (200,000 m2, 0.1), (500,000 m2, 0.2) and (500,000 m2, 0.4). The
slopes of the six distributions clearly indicate that the smaller the SU
polygons (roughly proportional to the values of both the a and c
parameters), the smaller the sizes of the high-susceptibility pixel clus-
ters and vice versa. It is worth nothing thatmost of the curves nearly fit
with the pure clustering distribution (grey line) for areas between 1000
and 10,000 m2, i.e. the smaller clusters of pixels given in the pure
clustering process (grey line) are not affected by the SUs. From these
results, we can already state that the SUs and their size (i.e. the type of
relief of a given area) are a key factor that controls landslide size.

The results of the custom metric defined in Eq. 7 (the cumulat-
ed frequency of the mapped landslides and the predicted ones are
used to optimize SU parameters for better agreement with the
distribution of the inventoried landslides) and the objective func-
tion proposed by Espindola et al. (2006) and adapted in Alvioli
et al. (2016) are shown in Fig. 8. Such objective function is shown
in Fig. 8b along with the F(a, c) metric of Eq. 7 (Fig. 8a). We note
that the present optimization procedure has selected an SU delin-
eation which does not provide optimal aspect segmentation, as a
result of the peculiar metric used in this work, but it is still in the
region of acceptable values of the SU to be a meaningful partition
of the terrain as far as the aspect homogeneity is concerned.

The distribution obtained by the set of SUs corresponding to
the minimum of F(a, c) is shown in Fig. 9 with a yellow solid curve,

denoted by “set 12” , and it has been obtained by (a ,
c) = (100,000 m2, 0.05).

The temporal probability of the first-time slope failure for each
susceptibility class has been calculated and normalised by the total
area occupied for each susceptibility class using Eq. 8. For each
class, the area of intact slopes in 1956 has been calculated and used
to normalize the frequency of each susceptibility class. Since the
number of pixels falling in a given susceptibility class depend on
the aggregation process and therefore on the SU size, the frequen-
cy for a given susceptibility will be dependent on the SUs size as
well. As afore-mentioned, a unique SU size does not exist, partic-
ularly in gently sloping areas like our study site. Hence, a previous
analysis to evaluate the influence of the SUs size on the frequency
of the first-time failures for a given susceptibility has been per-
formed. A group of four types of SUs afore-used to analyse the
influence of the SUs in the frequency size distribution has been
taken (Fig. 7b: SU2, SU20, SU35 and SU42). As shown in Table 7,
for a given susceptibility class, the area of intact slope does not
change so much (maximum variation of 0.14 km2 over a maximum
of 8.59) and the final frequency fluctuation is about 4%. Hence, the
influence of different SUs on the time dependence can be
neglected. The results of Table 7 are consistent with the suscepti-
bility class of the clusters of pixels. The frequency of the first-time
slope failures in the highest susceptible class (SC4) is one order of
magnitude bigger than the frequency in the mid susceptibility class
(SC3). Additionally, the null values of frequency obtained for the
two lowest susceptibility classes (1 and 2) and the increasing for
the susceptibility class 3 and 4 have confirmed the reliability of
SINMAP and the reclassified SI values. The fact that the suscepti-
bility classes 1 and 2 show the same frequency (0) is a matter of the
small number of first-time slope failures present in our study area.

Table 6 Validation of SINMAP by a receiving operating characteristics (ROC) analysis for high and medium susceptibility classes. Number of pixels classified as true positive
(TP), false positive (FP), false negative (FN), true negative (TN) and the resulting true positive rate (TPr) and false positive rate (FPr) are shown

Susceptibility class TP FP FN TN TPr FPr

High 9304 131,686 432 254,929 0.96 0.34

Medium 9483 194,495 253 192,120 0.98 0.5

Fig. 7 Size distributions of the areas of the highest susceptible class. a The curves show results obtained directly from SINMAP with no clustering (solid black line), results
with clustering but without using SU (light grey) and clustering using the 42 different SU sets listed and described in the text (colours). b Selected results from a,
corresponding to six different (a, c) parameter combinations
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However, the distinction between both classes is important as in
the stability analysis they showed a different susceptibility.

Finally, the MF matrix has been prepared considering the degrees of
hazard of the Swiss Federal Guidelines (Raetzo et al. 2002) and it is
shown in Fig. 10. Large translational landslides are usually very slow
movements in which large failures may imply effects onto larger area of
the territory rather than an event with higher velocity. Therefore, fre-
quency was considered to prevail over magnitude when evaluating the
degree of hazard for events with low and very low frequency. For
medium and high frequencies combined with low magnitude (index
13 and 14 in Fig. 10), the degree of hazard is considered to be low and
medium, respectively, as the size of the failures will be considerably
small (< 5000 m2). However, for events characterized by a medium
frequency and high magnitude (index 33, Fig. 10), the large size and
thickness of the movements, and its high recurrence, suggests that the
damage produced to the buildings may be more severe.

The hazard map of the whole area after the automatic pixel
aggregations, using the optimal SU (set 12 in Fig. 9), and the

application of the MFmatrix is presented in Fig. 11a. The comparison
between the reclassified susceptibility map obtained from SINMAP,
the susceptibility map after the automatic pixel aggregation and the
hazard map are shown in Fig. 11b–d, respectively. The figure shows a
south and south-east-facing slope, prevalently with susceptibility in
the highest class (Fig. 11b). However, some pixels with medium, low
and very low susceptibility (indicated with black arrows) have been
calculated by SINMAP in the middle of such slopes. Obviously, if a
landslide hazard mapping is performed, these small clusters (area <
800 m2) showing susceptibility values smaller than the surrounding
pixels will not be considered as less susceptible, but as an artefact due
to the pixel-based nature of the SF. Therefore, the susceptibility has
been homogenised along the slope by means of the SU-dependent
clustering procedure devised in this work, and the area of the
adjacent clusters, located within the same SU, with the same SI has
been calculated (Fig. 11c). Thereafter, the MFmatrix has been applied
(Fig. 11d) obtaining different degrees of hazard according to the size
of the pixel clusters.

Fig. 8 Slope units optimization metrics, calculated as a function of the SU delineation software input parameters, circular variance c and minimum area a, for 42 different
combinations. a The values of F(a, c), defined in Eq. 7, quantifying the deviation between the observed first-time failure distribution and the predictions obtained as a
function of the SU delineation parameters: the optimal values are found in correspondence of the minimum value of F(a, c), denoted by the black dot. b The aspect
segmentation objective function proposed by Espindola et al. (2006), adapted for aspect segmentation as in Alvioli et al. (2016). A green dot is shown in correspondence
to the optimal values by the procedure developed in this work and in Domènech (2015), and whose objective function is shown a

Fig. 9 Cumulative frequency size distribution belonging to the highest-susceptibility class (orange line) and obtained after the pixel clustering using the SU that shows the
best agreement, according to the metric defined in Eq. 7, and shown in Fig. 8, with the observed landslide cumulative frequency obtained (first-time failures) (full circles)
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It is important to notice that within the same SU, pixel clusters
of different susceptibility are possible. In terms of probability of
failure, we expect a frequency of failures of each susceptibility class
according to the results of Table 7. The hazard classes of the
clusters of pixels (Fig. 11d) are defined based on the pairs of
frequency of failures-size of the pixel cluster. Thus, despite some
pixel clusters being classified as high susceptibility in Fig. 11c, they
may become medium hazard if their size do not exceed the
established threshold (Fig. 11d).

Conclusions
A supervised procedure has been developed and applied in the
Barcedana Valley (Eastern Pyrenees, Spain) to evaluate the frequency
and magnitude of first-time slope failures. A deterministic model is
used to obtain susceptibility classes, which is applied to the SUs to
generate the magnitude-frequency matrix. In particular, the aim was
to map predicted potential failures of intact slopes with size consid-
erably larger than the pixel size, but smaller or equal than the slope
unit in which they fall in. Compared to other hazard analysis ap-
proaches using the entire SU (e.g. Guzzetti et al. 2006), the procedure
developed here is able to identify and define the area mostly likely to
fail within the SU, i.e. most susceptible part of the slope only.

The susceptibility assessment has been performed using the
physically based SINMAP model (Pack et al. 2005). The probability
of failure has been reclassified into a classified pixel-based SI map.

The magnitude of the potential failures has been obtained
performing an automatic aggregation of groups of adjacent pixels
with the same susceptibility class, located within the same SU and

having an area smaller than a given threshold. In that case, SUs
were used as aggregation domains. To this end, we have developed
a procedure to split the clusters of pixels of the same SI among
different adjacent SU. Since a predefined SU delineation for a
given study area does not exist, several predictions using different
SU delineations, including SUs of different sizes and shape, were
carried out using the parametric r.slopeunits software developed
by Alvioli et al. (2016). We have checked whether the number of
pixels of a given susceptibility class depends on the SU size. The
magnitude of the potential failure is calculated as the size of the
pixel cluster of the highest susceptibility class within the SU. The
latter has been chosen by maximizing the agreement with the
observed landslide data. The landslide size distribution modelled
in this way is considered as our best estimate of the magnitude
component of landslide hazard.

The first-time slope failures, mapped by analysing stereoscop-
ically a set of orthophotos covering a 57-year period, have been
used to calculate the frequency of each susceptibility class. The
frequency was calculated by dividing the percentage of observed
first-time failures, falling in each susceptibility class, by the time
span covered by the orthophotos, and normalised by the area
occupied by each susceptibility class. In this way, we have obtained
an estimate of the temporal frequency component of landslide
hazard. The procedure of landslide frequency obtained matches
consistently with the landslide susceptibility classes generated
(Table 7). We have checked that the influence of SU size on the
determination of the frequency of the potential failures is
negligible.

Table 7 Normalized frequency of first-time failures (no. of failures/year/km2) per susceptibility class, for the selected SU. SC susceptibility class, No. number of first-time
slope failures, Failure ratio number of first-time slope failures of each susceptibility class/overall, T observed period of time (1956 to 2013)

SC No. Failure
ratio

T Area of intact slopes in 1956 (km2) Frequency of first-time slope failures
(no./year/km2)

SU
no. 2

SU
no. 20

SU
no. 35

SU
no. 42

SU
no. 2

SU
no. 20

SU
no. 35

SU
no. 42

1 0 0 57 8.56 8.55 8.58 8.59 0 0 0 0

2 0 0 57 2.21 2.15 2.24 2.25 0 0 0 0

3 1 0.059 57 3.26 3.25 3.26 3.26 0.005 0.005 0.005 0.005

4 16 0.941 57 5.60 5.68 5.56 5.54 0.05 0.049 0.051 0.051

Fig. 10 Magnitude-frequency matrix defined to evaluate the hazard of the first-time slope failures by combining the susceptibility (with an associated frequency of
failure) and the magnitude (area) of each failure
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Amagnitude-frequency matrix has been prepared considering that
the frequency prevails over the magnitude for low and very low
frequency classes. The landslide hazard maps have been obtained
considering the optimal SU delineation and applying the MF matrix.
Our procedure shows that not all the most susceptible pixel clusters
are the most hazardous as the latter also depends on the size of the
potential failure (Fig. 11): for small SUs, the final hazard degree is
typically smaller, and vice versa. Hence, the SU size and the mapping
units in general play an important role to obtain the final results
(Guzzetti et al. 2006; Pavel et al. 2008; Catani et al. 2013; Erener and
Düzgün 2013) and the best SU delineation should be chosen after
checking their consistency with the observed slope failures.

The general framework can be applied using any physically based
model with a pixel-based output, which must be properly classified.
The presented methodology allows assessing the hazard in a semi-
automatic and objective way, and considering the landslide size in-
stead of individual pixel values or the whole slope unit, thus using both
pixel and mapping unit information to the maximum extent.
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