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ABSTRACT
Ischia Island is a volcano-tectonic horst in the Phlegrean Volcanic
District, Italy. We investigated rockfalls in Ischia using STONE, a
three-dimensional model for simulating trajectories for given
detachment locations of blocks. We propose methodological
advances regarding the use of high-resolution LiDAR elevation
data, the localization of possible detachments sources, and the
inclusion of scenario-based seismic shaking as a trigger for rock-
falls. We demonstrated that raw LiDAR data are useful to distin-
guish areas covered by tall vegetation, allowing realistic
simulation of trajectories. We found that the areas most suscepti-
bile to rockfalls are located along the N, N-W and S-W steep
flanks of Mt. Epomeo, the S and S-W coast, and the sides of some
steep exposed hydrographic channels located in the southern
sector of the island. A novel procedure for dynamic activation of
sources depending on ground shaking, in the event of an earth-
quake, helped inferring a seismically-triggered source map and
the corresponding rockfall trajectories, for a scenario with 475 y
return time. Thus, we obtained preliminary rockfall suceptibility in
Ischia both in a “static” (trigger-independent) scenario, and in a
seismic shaking triggering scenario. They must not be considered
a risk map, but a starting point for a detailed field analysis.
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1. Introduction

Landslides are natural phenomena which shapes the Earth surface, and in populated
areas they can endanger lives and cause huge economic damages. Rockfalls are among
the most dangerous types of landslides for their rapidity and destructive potential.
Research on landslides focuses on methods that allows spatial zonations of the prob-
ability of occurrence (susceptibility), while hazard assessment requires knowledge of
magnitude and temporal frequency. Additional information about vulnerable elements
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exposed to hazard allows to estimate the risk associate to landslides, in general, and
rockfalls in particular.

For example, Copons and Vilaplana (2008) discussed the exposure of human lives
and land to rockfalls in Andorra; Youssef et al. (2015) investigated the relationship
between rockfalls and urban expansion in Saudi Arabia; Alvioli et al. (2021) produced
rockfall susceptibility maps along the whole Italian railway network; Dorren et al.
(2022) discussed mitigation of rockfall risk in the Swiss Alps.

Here, we performed a preliminary susceptibility zonation of rockfall susceptibility
in the Ischia Island, with a three-dimensional model and high-resolution topographic
data. We further implemented a novel mechanism to link spatial susceptibility with a
seismic forcing with well-defined return time, adding a temporal component to get
one step closer to full hazard assessment; we further analyzed the possible impact of
rockfalls on roads and built up areas, in a critical way.

Rockfalls are widespread geomorphological processes that represent one of the
main hazards in mountain areas (Whalley 1984), with mobilized volumes ranging
from less than 1 to 105 m3 (Evans and Hungr 1993; Hungr et al. 1999; Ruiz-Carulla
and Corominas 2020) and with a very rapid to extremely rapid movement (Broili
1973; Dorren 2003). To describe them, we adopted the model STONE (Guzzetti et al.
2002), suitable for events including the detachment of individual blocks from a steep
slope or a rocky cliff and following a path consisting in falling, bouncing and/or roll-
ing on the ground. Thus, we do not discuss rock avalanches and other phenom-
ena, here.

The most relevant input of STONE is a map of possible rockfall sources. This is a
common input to many similar models, namely: RockGIS, (Matas et al. 2017);
Rockyfor3D, (Dorren et al. 2022) and references therein; 2D CRSP, (Jones et al.
2000); Hy-STONE (Agliardi and Crosta 2003). All of these models calculate geomet-
rical rockfall trajectories for given starting points; and none of them contains an
physical mechanism to determine if and when blocks actually detach from a specific
point. We applied STONE because we have been working with the model for several
years already, in different settings (Guzzetti et al. 2003, 2004; Santangelo et al. 2019;
Sarro et al. 2020; Santangelo et al. 2021; Alvioli et al. 2021).

Several methods exist to gather information about slope stability and to map land-
slides features, including rockfalls sources and trajectories followed by individual fall-
ing blocks in individual slopes. They may involve direct field observation (Heckmann
et al. 2016; Rossi et al. 2021), laser scanning (Copons and Vilaplana 2008), photo-
grammetry based on photographs acquired on the ground (Matas et al. 2022) or by
aerial vehicles (Santangelo et al. 2019; Buyer et al. 2020; Giordan et al. 2020), and
infrared thermography (Baron et al. 2014; Loche et al. 2022). Such information is use-
ful to infer the likely location of future rockfall sources, and represent a valuable
input for the application of three-dimensional models for rockfall trajectories.
Simulation of boulders trajectories represents an essential tool in hazard/risk analyses
(Lan et al. 2007, 2010; Pellicani et al. 2016).

Here, we present results of an analysis based on a new application of LiDAR eleva-
tion data and use of the model STONE (Guzzetti et al. 2002) for a probabilistic
assessment of rockfall trajectories. We investigated various steps of the procedure
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involved in preparing input data for running the computer code, assessment of the
results of simulations and their impact on built-up areas and roads, and a scenario-
based hazard assessment for seismic triggering of rockfall events to identify the most
rockfall-susceptible areas of the island, to plan detailed field studies aimed at full
rockfall risk assessment in Ischia.

This work is organized as follows: Section 2 describes the geological setting, the
historical seismicity and the historical flank instability of Ischia, and introduces the
three-dimensional rockfall simulations. Section 3 describes and lists the data used for
this study, specifying which were already available and which were newly developed.
Section 4 describes the different steps performed in this work: interpolation of raw
LiDAR data; values of input parameters, also in relation to vegetation; rockfall source
localization; application of a new probabilistic model for triggering seismically
induced rockfall. Section 5 describes the main results for the assessment of trajecto-
ries, Section 6 discusses results and draws conclusions about the simulation of rock-
falls in Ischia island.

2. The study area

2.1. Geographical and geological setting

The Ischia island is one of the three volcanic complexes located in the Phlegrean
Volcanic District (Orsi et al. 1999) which last erupted in 1302 (Civetta et al. 1991). It
is an active volcanic field at rest that covers an area of about 46 km2 and it is charac-
terized by a remarkable ground uplift caused by the resurgence of an ancient col-
lapsed caldera (Acocella and Funiciello 1999), whose rim is facing the southwest and
northwest sectors of the island.

Figure 1. (a) Location of the study area; the background represents seismic hazard levels in Italy,
represented by maximum ground acceleration with exceeding probability of 10% in 50 years
(Stucchi et al. 2004), for illustrative purposes. (b) A shaded relief obtained from 2� 2m elevation
data of the island, colorized with shades of green as a function of the difference between a digital
surface model (including vegetation) and a digital terrain model (excluding vegetation). Brown pol-
ygons are buildings and black lines are roads, both from the OpenStreetMap project.
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Being a volcanic island, Ischia shows different processes, e.g. fumarolic activity,
earthquakes, slope instabilities and volcanic climax eruptions. Volcanic edifices
experience slope instability as consequence of different solicitations such as (i) erup-
tion mechanism and depositional process, (ii) tectonic stress, (iii) extreme weather
conditions and (iv) seismic shaking. All these events induce the mobilization of
unstable fractured volcanic flanks, initiating rockfalls (Carracedo 1996; Hurlimann
et al. 2000; Delcamp et al. 2017; Roberti et al. 2021). The island is also densely popu-
lated, and the national inventory of landslide phenomena (Trigila et al. 2010; ISPRA
2018) in the area show rockfall runout/deposition areas with substantial overlap with
buildings and infrastructure (Figure 1). Thus, assessment of possible locations for ini-
tiations of new falling blocks, and their possible trajectories downhill, is of paramount
importance.

The regional extensional tectonics is supposed to be related to the opening of
back-arc basins caused by an East-retreating subduction of the Apulo-Adriatic litho-
sphere (Doglioni et al. 1996). The resurgent dome generated an uplifted block, the
Mount Epomeo horst, located in the central and western sector of the island; it is
marked by a system of subvertical faults striking NW-SE and NE-SW, on the edges
of the dome and away from it, and and N-S and W-E mainly located at the borders
of the dome (Acocella and Funiciello 1999). The southeastern part of the island is
characterized by highly dipping ENE-WSW normal faults. Volcanism at Ischia started
over 150 ka B.P. (Cassignol and Gillot 1982) and continued, with very long period
(centuries to millennia) of quiescence, until the last eruption occurred in 1302A.D.
(de Vita et al. 2006). The oldest exposed rocks belong to a partially eroded volcanic
complex, which crops out in the south-eastern part of the island, covered by more
recent deposits, composed of volcanic effusive and explosive rocks, mostly trachytes
and phonolites (de Vita et al. 2006). The large Mount Epomeo Green Tuff caldera
formed during the eruption that took place 55 ka ago. In addition to volcanic soils,
debris flow deposits cover the southern slope of Mount Epomeo and in the northern
and western sectors of the island (de Vita et al. 2006). Southern sector collapses of
Ischia, probably occurred between between 8.6 and 5.7 ka ago as a consequence of the
resurgence, generated three major debris flow deposit units (Tibaldi and
Vezzoli 2004).

2.2. Historical and recent seismicity

Historical seismicity of Ischia is dominated by the earthquakes of 1881 (D’Auria et al.
2018) and 1883 (Carlino et al. 2010), which mainly affected Casamicciola Terme and
the other municipalities of the island. Both events, especially the second one, strongly
affected the towns on the island causing the death of 2,313 people (Cubellis et al.
2004), and triggered several ground and environmental effects: large landslides
North-Western slopes of Mt. Epomeo, ground cracks and variations of the springs’
flow rate, chemistry and temperature (Alessio et al. 1996). Since 1883, before 2017
the seismicity of Ischia was characterized by small and shallow events, most of which
were detectable only in Casamicciola Terme (D’Auria et al. 2018) On August 2017 a
seismic sequence characterized by a starting Mw 4.0 earthquake occurred 1–2 km
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below the town of Casamicciola Terme (De Novellis et al. 2018). Given that the high-
est geothermal activity is located in the southwest sector of the island while the main
seismogenic portion of Ischia is represented by the Casamicciola Terme area, the
recorded seismicity does not seem to be correlated with the geothermal activity
(Chiodini et al. 2004). Then it is reasonable to speculate that seismogenesis at Ischia
is probably related to the structural dynamics of the northern part of the island (Orsi
et al. 1991; Paoletti et al. 2013).

2.3. Slope stability

The North, North-West and South-West facing steep flanks of Mount Epomeo are
considered the gravitationally least stable slopes of the island (Della Seta et al. 2011).
Mass movement deposits are widespread on the island and were generated by rock-
falls, slides, toppling, debris flows and debris avalanches (Mele and del Prete 1998;
Tibaldi and Vezzoli 2004; del Prete and Mele 2006). Slope movements on the island
are correlated with vertical uplift and volcanism (Fusi et al. 1990; Alessio et al. 1996;
Mele and del Prete 1998). This relationship is documented by displacement of vol-
canic and non-volcanic deposits, whose age and original stratigraphic position are in
some cases well constrained (de Vita et al. 2006).

Old mass movements have been correlated to volcanic eruptions (Buchner 1986),
whilst recent events (del Prete and Mele 2006) have been related to exceptionally
heavy rains (Mele and del Prete 1998) or to seismicity (Guadagno and Mele 1992;
Molin et al. 2003; Rapolla et al. 2010). Rockfalls mainly occur as an effect of the
gravitational instability on the cliffs along the coastline or on the major scarps gener-
ated by the rapid resurgence. Their activation was favored by the widespread rock
fracturing (favored in turn by hydrothermal weathering), which allowed even huge
blocks to be detached (Della Seta et al. 2011).

Rockfall dynamics can be defined as a two steps process: the detachment of a
rocky block from a slope (first step) and the subsequent downslope movement
(second step). In general terms, landslide hazard analysis should determine both the
likelihood of occurrence of failures, both in time and space. Due to its characteristic
and to its rapidity, a rockfall hazard assessment should also consider the travel dis-
tance of the falling blocks, and their trajectories (Guzzetti et al. 2004).

More specifically, a comprehensive analysis of rockfalls hazard should include a
wealth of specific data: accurate source areas locations in a rock cliff (Loye et al.
2009), the volume of rock mass that can be released (Mavrouli and Corominas 2020;
Francioni et al. 2020; Hantz et al. 2021), the dissipation of energy during rolling and
rebounds on the slope surface (Caviezel et al. 2021) and impacts on trees (Dorren
et al. 2006; Lundstrom et al. 2009; Lu et al. 2021), penetration depth in the soil dur-
ing impact (Pichler et al. 2005; Lu et al. 2019) and, possibly, a model for fragmenta-
tion of the block after each impact (Ruiz-Carulla and Corominas 2020).

In this research we did not adopt a physical model to infer the timing of the rock-
fall and the detachment processes. The existing methods to analyze the source area,
investigating the precise location of the possible detachment points, the travel dis-
tance of the falling blocks, the expected volume of the blocks, and the frequency and
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size of rockfalls, are only applicable on very small areas and are beyond the scope of
this work. Expert mapping of possible source areas by photo and satellite interpret-
ation is an adequately strong and effective approach which can be used to identify
the source points on relatively large areas (Santangelo et al. 2019, 2021), in combin-
ation with morphometric analysis (Michoud et al. 2012; Alvioli et al. 2021).

Here, we are interested in obtaining a preliminary rockfall zonation of the island.
We also estimated the likelihood of built-up locations and roads to be hit by a block
falling from upslope, according to the proposed zonation; risk assessment is not the
primary focus of this work, though. To evaluate the rockfall trajectories, the following
information is needed: (i) the point of origin of the falling rock, (ii) the underlying
topography, (iii) the friction and energy restitution coefficients of the cropping out
rocks downhill, useful to run a model for the description of how the mass would
reach a rest state.

Eventually, we performed an assessment of seismic-induced rockfalls within an
earthquake scenario with a specific return time. We proposed a new model to link a
scenario-based seismic ground shaking to a probability of triggering rockfalls. For
this additional step we need additional input, with respect to the data listed above.
The seismic-triggering mechanism is based on spatially distributed peak ground accel-
eration (PGA), and it will be explained in detail in the following.

Figure 2. Information on rockfalls in the study area. Bright green polygons are falls and diffused
falls areas from the Italian IFFI Inventory; blue empty polygons show manual mapping of sources
on Google EarthTM images, performed for this work.
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3. Materials

We used materials which were either already available to us (a small scale geo-litho-
logical map; an inventory of rockfalls occurred on the island; a vector map of the
buildings and roads, and a map of ground shaking for a specific scenario), or newly
developed maps (a digital elevation model, and a map of sources prepared in expert
way). Here follows a short description of such data.

1. Raw LiDAR data provided by the Italian Ministry of the Environment.
Interpolated data to obtain digital terrain and surface models, to run the com-
puter code of the model STONE and to obtain spatial information about vegeta-
tion height; Figure 1).

2. Vector layer containing the street network and the polygons of buildings, from
OpenStreetMap; Figure 1). The map contains about 580 km of roads, and more
than 16,000 buildings.

3. Inventory of landslide phenomena in Ischia, selected from the inventory of land-
slide phenomena in Italy known as IFFI (Trigila et al. 2010; ISPRA 2018). The

Figure 3. Geo-lithological map of the island (adapted from Rapolla et al. (2010)) The information
in the map was useful to obtain numerical values of the parameters controlling the behavior of
blocks bouncing or rolling on the ground; cf. Table 1.
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IFFI inventory contains 308 landslide polygons in Ischia island, of which 100 are
identified as rockfalls and diffused rockfalls (Figure 2).

4. Map of sample potential source area for rockfalls on Ischia, from expert inter-
pretation of Google EarthTM images (Figure 2).

5. Geo-lithological map of Ischia, scale 1:50,000 Rapolla et al. (2010). Figure 3
shows the map, with eight lithological classes (listed in Table 1).

6. Map of PGA for the major Casamicciola earthquake of 1833, obtained from
Rapolla et al. (2010), and corresponding to a return time of 475 years (Figure 4).
We are aware of a recent work (Albano et al. 2018) proposing a model for a
PGA map of the 2017 earthquake in Ischia, also in relationship with ground
movements. We did not consider that specific event, here, because we deal with
scenarios associated with specific return times; we will discuss this choice further
in the Methods section.

7. A land cover map, obtained from ISPRA (2012), useful to compare inferred vege-
tation areas with actual land cover, though at lower resolution (10 m) than the
DEM adopted here.

4. Methods

The different steps performed in this work can be summarized as: (1) interpolation of
raw LiDAR data, to obtain digital elevation models; (2) assignment of values for input
parameters, based on geo-lithological data and presence of vegetation; (3) localization of
prospective sources for the initiation of rockfall trajectories and run of the computer pro-
gram STONE, for different options of the input source map; (4) application of a new
model for selective triggering of prospective sources, and corresponding trajectories, due
to seismic shaking. We illustrate these point in the following four paragraphs.

4.1. Interpolation of raw LiDAR data

We used data from the Italian “Geoportale Nazionale,”1 managed by the Ministry of
Environment and providing different kinds of spatial data. In particular, the archive
contains an extensive LiDAR survey covering a substantial portion of Italy, with data

Table 1. Numerical values of the parameters used in STONE, inferred by comparing the geological
formations present in the island and the classification of Alvioli et al. (2021) and Bucci
et al. (2022).

Geology Friction

Tangential Normal

Restitution Restitution

Lavas 0.3 75 65
Debris deposits 0.7 55 35
Sand and fill 0.8 40 15
Pyroclastic deposits 0.35 55 45
Reworked pyroclastic deposits 0.5 40 30
Siltstone 0.4 65 55
Pumice, breccias, welded scoriae 0.35 55 45
Tuff 0.55 75 65

Figure 3 shows the corresponding geo-lithological map. We set STONE to perform random sampling of values of the
parameters in a ± 10% range around the nominal values listed here.
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stored at intermediate processing level. Each point contains the x, y coordinates of
the point, its elevation, and a binary classification flag. For this research, we selected
point clouds covering the Ischia island and we interpreted the two values of the flag
either as referring to reflections of the laser impulses from the ground (first returns
labeled with flag “1”) or from the upper vegetation, or other elevated surfaces (second
returns, flagged with “2”). The two sets of data contain, respectively, 39,896,156 and
25,320,537 points. We interpolated separately the two point clouds, using the module
r.surf.rst specifically designed to perform surface interpolation from vector points
map by splines, within GRASS GIS (Mit�a�sov�a and Hofierka 1993).

Interpolation resulted in two digital elevation models, with a square grid of 2m �
2m - the nominal resolution of the digital elevation model provided “as-is” from the
same data source as the point clouds. In the following, we will refer to the first one
as digital terrain model (DTM) and to the second one as digital surface
model (DSM).

Moreover, we interpreted the point-to-point difference between DSM and DTM as
due to vegetation, and exploited this information to infer modifications of ground
parameters relevant for the simulations with STONE. We partially took into account
disturbances due to the presence of anthropic structures and buildings using add-
itional land cover data, which we correlated with point-to-point DSM – DTM differ-
ences, as explained in the next section.

Figure 4. Peak ground acceleration map obtained for the Casamicciola earthquake of 1883, corre-
sponding to a return time of 475 y Rapolla et al. (2010). Numerical values are expressed as fractions
of g, the acceleration of gravity.
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4.2. Numerical input parameters

In STONE, the behavior of individual blocks rolling and bouncing down a slope on
different types of substrata is controlled by three main parameters. Friction controls
the rolling stage, while normal and tangential restitution control bounces. We
inferred the values of the three parameters by expert comparison of the geo-litho-
logical formations existing in the island and values of the parameters reported in the
bibliography, mainly by (Guzzetti et al. 2002) and Alvioli et al. (2021). The selected
values are listed in Table 1.

The criteria adopted to match lithotypes with parameter values were as follows
(Guzzetti et al. 2004). Massive and/or thickly bedded rocks (e.g. lavas, limestone,
thickly bedded siltstone, claystone etc.) are characterized by very high values of the
normal and tangential energy restitution coefficients and very small values of the
dynamic rolling angle, as well as pyroclastic deposits and breccias and pumice;
whereas thinly bedded limestone, clay and reworked materials are characterized by
intermediate values of the normal and tangential restitution coefficients and also of
the dynamic rolling angle. Empirical field data revealed that the alluvial deposits
show low values of the normal and tangential energy restitution coefficients, and a
very high value of the dynamic rolling friction angle (Guzzetti et al. 2002, 2004).

The program STONE performs a random modification of individual values of the
parameters, within configurable intervals and probability distribution functions.
Moreover, we assumed that vegetation interferes with trajectories of falling blocks
reducing their ability to proceed downhill (Dorren et al. 2006; Masuya et al. 2009;
Dorren et al. 2022). Thus, we modified the parameters exploiting information about
the presence of vegetation obtained using the available LIDAR data (Section 4.1). The
map of vegetated area used in Figure 1) to colorize the shaded relief of the island was
obtained subtracting the DEM generated using the” second impulse” from that
obtained interpolating the” first impulse,” and considering only points with a positive
altitude difference of more than 5m, which actually exists in the island.

We assumed that vegetation interferes with trajectories of falling blocks only modi-
fying the parameters of cells identified as containing vegetation; we did not set up
physical barriers. Thus, in the grid cells with vegetation, we enhanced the friction

Table 2. Comparison between the DEM difference used in this work as a proxy for the presence
of higher vegetation, and land cover obtained from a national land cover map, at 10m resolution,
obtained from the ISPRA website.
Land cover Diff > 1 m Diff > 5 m Diff > 10 m

Artificial surfaces 29.4% 16.8% 8.50%
Bare soil, rocks 0.15% 0.05% 0.02%
Beaches, dunes and sands 0.18% 0.11% 0.08%
Broad leaved 41.5% 66.0% 77.3%
Needle leaved 1.98% 2.51% 3.60%
Orchards 7.46% 5.01% 3.68%
Vineyards 2.66% 0.88% 0.44%
Pastures 0.39% 0.18% 0.08%
Arable land 1.24% 1.03% 0.89%
Permanent herbaceous 14.4% 7.07% 5.12%
Permanent water bodies 0.23% 0.14% 0.12%

Values are percentages of each land cover type within the pixels in which the DEM difference is larger than 1, 5 or
10m; pixels with buildings and roads (cf. Figure 1) were excluded from the calculations.
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coefficients in Table 1 by 50% and reduced both the restitution coefficients by 50%.
We considered as vegetation only the grid cells with a positive difference between the
DSM and DTM, larger than 5m. We decided to use grid cells with DEM differences
larger than 5m as follows. We used a land cover map (ISPRA 2012; 10m resolution),
and calculated the percentage of cells falling in each land cover class where the DEM
difference was larger than a threshold. Using three different thresholds, namely 1m,
5m and 10m (Table 2). We observed that 5m provided a reasonable balance between
the accumulated percentages of classes which potentially affect rockfall trajectories
(low values in “broad leaved,” “needle leaved,” “orchards” and “vineyards”) and
classes which surely correspond to false positives for the DEM difference interpreted

Figure 5. On the left: slope values distribution (a); relative relief calculated in a mobile window of
15� 15 grid cells (c); relative relief calculated in a mobile window of 25� 25 cells (e). Histograms
were normalized and calculated either for the only cells mapped as sources and throughout the
whole study area. On the right (b, d, f): ratios (normalized to unity) of the corresponding histo-
grams shown on the left column.
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as upper vegetation, namely “artificial surfaces.” Thus, we selected 5m as a minimum
difference to modify terrain parameters in STONE.

4.3. Localization of rockfall sources

The most relevant input of the program STONE is a raster grid specifying the loca-
tion of sources. For small areas, i.e. at slope or small catchment scale, sources can be
mapped on the field and by photointerpretation. On larger areas, either procedures
are impractical and sources must be inferred in some probabilistic way. We follow a
similar approach as in Alvioli et al. (2021), where the analysis concerned the whole
Italian railway system. Sources were localized by morphometric analysis on a few
sample locations mapped by experts, and statistical generalization to the whole area
of interest identifies locations of possible future sources.

Here, we used the results of the generalization procedure of Alvioli et al. (2021) as
a starting point, and applied additional cuts based on slope angle and relief (elevation
range) values. Additional cuts are based on mapping of possible sources of rockfalls
on Google EarthTM images, shown as blue polygons in Figure 1. The expert mapping
analysis consists in a detailed investigation of the location of potential sources of
rockfalls through the photointerpretation of satellite images spanning a period of
about 10 years (Guzzetti et al. 2004; Santangelo et al. 2019, 2021). The mapped poly-
gons were used to calibrate the statistical procedure providing additional information
on the local conditions that may induce detachment of blocks. We analyzed the dis-
tribution of values of slope and relief within the mapped polygons, first, and of the
whole study area, then. Figure 5. The latter can be calculated in different ways, as vir-
tually any morphometric quantities derived from a DTM (Trevisani and Cavalli 2016;
Voros et al. 2021).

Generally speaking, relief is defined in each grid cell as the difference between the
maximum and minimum values of elevation in a neighborhood of that cell; thus, it
clearly depends on the size of the neighborhood. We investigated the values of relief
within mapped sources, in relation with values in the whole study area, for different
sizes of the neighborhood, using the module r.neighbors in GRASS GIS. It turned out
that two specific sizes, namely square neighborhoods of size 15 and 25 cells, have dis-
tributions that helps generalizing the morphometric characteristics of mapped sources
to the whole area. This is clearly shown in the ratio of histograms corresponding to
values of slope, 15� 15 relief and 25� 25 relief within the sources and in the whole
area, in Figure 5.

From the shape of the ratios, we concluded that the probability of any grid cell in
the study area to be a source of rockfalls is much larger for increasing values of slope,
15� 15 and 25� 25 relief. Thus we assigned each grid cell a probability proportional
to the ratio source/whole area of slope as shown in the figure, P(S). In addition, we
heuristically defined thresholds for relief, i.e. we set the grid cells with joint values of
15� 15 relief below 35m and 25� 25 relief below 45m to null probability. We refer
to the relief-constrained probability as P(S, R), where R ¼ ðR15,R25Þ: The probability,
in turn, controls the number of trajectories initiating from each grid cell of the DTM,
providing a probabilistic output for the model. The number of simulated trajectories
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per source cell varies from a minimum of 10 trajectories, at lower probabilities, to a
maximum of 100, for probability equal to unity. The resulting raster source map is
called SRCProb, where SRC stand for “source” and where Prob stands for
“probabilistic.”

4.4. A new model for seismically induced rockfalls

To investigate the impact of earthquake-induced rockfalls, we illustrate here a new
model to link ground shaking to the natural predisposition of slopes to be affected by
rockfalls. The method was developed within a national project called FRA.SI –
“Integrated multi-scale methodologies for the zonation of earthquake-induced hazard
in Italy,” jointly developed by CNR IRPI, IREA and IGAG (https://frasi-project.irpi.
cnr.it, in Italian). Basic assumptions of the method are that seismic shaking is one of
the possible triggers of rockfalls which typically affect slopes with specific topographic
characteristics, or where rockfall occurred already (Govi 1977). We briefly summarize
the rationale of the method, here below.

We consider the probabilistic source map described in Section 4.3 as the baseline
map, in which the different grid cells with non-null probability can be actually activated
(i.e. trajectories initiating from these cells are actually simulated within STONE) as a
function of ground shaking due to an earthquake. We selected peak ground acceleration
(PGA) as a scalar, distributed measure of the intensity of an earthquake event. We
defined the overall probability of a grid cell with given values slope angle S, relief R ¼
ðR15,R25Þ, and PGA of representing a source of rockfalls as follows:

PseismicðS,R; PGAÞ ¼ PðS,RÞ PGA� PGAmin

PGAmax � PGAmin
, (1)

where the first factor on the right hand side, P(S, R), is the relief-constrained prob-
ability as a function of S, R15 and R26, defined in Section 4.3, and the second factor is
a damping factor. The latter is a linear function of PGA, and assumes values between
0 and unity; thus, it sets to zero the overall probability PseismicðS,R;PGAÞ where PGA
is null, and leaves P(S, R) unmodified where PGA ¼ PGAmax.

The values PGAmin and PGAmax in Eq. (1) were determined from the minimum
and maximum values of expected PGA calculated from return times of 475 y and
975 y, all over Italy, with the model of Mori et al. (2020); Falcone et al. (2021), and
are 0.0 and 0.81, respectively (in units if g, the Earth’s acceleration of gravity). The
rationale for using these minimum and maximum values rely on the possibility of
using the same method of defining PseismicðS,R; PGAÞ in a parametric way, as a func-
tion of values of PGA contained in specific maps, corresponding to specific earth-
quake events, with return times within the range 475 y and 975 y. Thus, the method
is applicable both using scenario-based PGA maps.

For the specific PGA map available for the study area of interest in this work, we
obtained a raster source map called SRCseismic, using Eq. (1). We stress, here, that we
used the PGA scenario of Rapolla et al. (2010) because that was explicitly associated
with a specific return time. This is consistent with the meaning of the parameters
PGAmin and PGAmax of Eq. (1), which were calibrated against national PGA maps for
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the same specific scenarios. Use of a different PGA maps, corresponding to as specific
event as e.g. in Albano et al. (2018), would be inconsistent with such definition, as it
would require an absolute calibration of the parameters PGAmin and PGAmax against
a number of specific events for which rockfalls were observed and mapped. This is
beyond the scope of this work; such kind of study is underway and will be presented
elsewhere (Alvioli et al. 2022b).

4.5. Simulation of rockfall trajectories

The software STONE, adopted here, assumes point-like masses falling under the sole
action of gravity and the constraints of topography, and it calculates trajectories
dominated by ballistic dynamics during falling, and bouncing and/or rolling on the
ground in a probabilistic way. The assessment of trajectories derives as consequence
of several of steps, the first of which consists in the identification of perspective rock-
fall source areas. Identification of potential rockfall sources is a key step of numerical,
physically based simulation of rockfall runout (Alvioli et al. 2021; Section 4.3).

The software STONE was designed to assess rockfall hazard at the regional and
local scales using thematic data (e.g. geological, geomorphological, land use maps
etc.), available for large scale or obtained in field surveys (Guzzetti et al. 2002). In the
model, a kinematic simulation is performed computing the trajectory at discrete time
steps. Within each time step the boulder can be in a free falling state, in a rolling
state, or in a bouncing state (Guzzetti et al. 2002). The trajectory of each boulder is
computed from the digital topography and it depends on the starting point, and a set
of coefficients used to simulate the loss of velocity at the impact points or during the
rolling state, i.e. dynamic friction where the boulder rolls, normal and tangential res-
titution coefficients values at each impact point.

Attribution of ranges values for dynamic friction and normal and tangential resti-
tution coefficients depends on the lithotype was inferred from a geo-lithological map
(Figure 3). We assigned values by comparison of the information available from the
literature for each lithological class (Guzzetti et al. 2002; Alvioli et al. 2021). For each
simulation the program allows a random variation in the coefficients (within 10% of
the nominal values listed in Table 1, uniformly distributed) and in the initial direc-
tion of motion, resulting in an output with probabilistic meaning.

Furthermore, since the vegetation can be considered an important element that
can influence and reduce the distance that a rolling boulder can reach, the friction
between the falling block and the terrain was increased by 50% and the normal and
tangential restitution coefficients were reduced by 50% in all such cells. Thus, we
have run STONE with two identical sets of input data, except the set of numerical
parameters describing the soil response, corresponding to considering or not the
effect of vegetation.

5. Results & discussion

Figure 6a and b show the results of the assessment of trajectories on the basis of the
slope S, defined within the established thresholds for relief R15 and R25, respectively,
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Figure 6. Green–yellow–red color ramp: trajectories count for each cell, simulated with STONE,
using the probability sources located on the basis of slope delimited within established thresholds
for relief values of 15� 15 and 25� 25. (a): trajectories calculated without considering the pres-
ence of vegetation. (b): trajectories calculated considering the influence of vegetation.
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without considering the presence of vegetation and contemplating the effect of vege-
tation. We decided to use these thresholds on the basis of the results of diagrams
shown in Figure 5. The analysis of Figure 5 highlights that in cells mapped as sources

Figure 7. Detail of Figure 6.
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Figure 8. Potential impact of simulated trajectories on infrastructure; (a) impact on buildings; red
squares represents building which potentially could be hit by falling boulders and yellow squares
represent building identified as potential hits by by STONE but ruled out as “false positive” in an
expert way. (b) roads; the color ramp represents intersection with a very high (purple), high (red),
medium (orange) and low (green) number of trajectories.
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the probability of observed values of slope and relief higher than a certain limit could
be used to locate sources through a probabilistic analysis. Therefore, we considered
the “static” source probability as a function of slope according to the normalized ratio
of Figure 5b; probability; then, we used the values of relief calculated in a 15� 15
and 25� 25 cells neighborhoods as thresholds to establish which of the identified
sources have more probability of representing a source of falling boulders (Figure 5d
and f). We note, here, that considering relief only provides a correction to the proba-
bilities obtained using slope alone.

As highlighted in Figure 7a and b the presence of vegetation reduces the reach of
boulders trajectories, by construction. As explained in section 4.2 we considered as
vegetation the grid cells with a positive difference between the DSM and DTM larger
than 5m. We decided to use the threshold of 5m because, as shown in Table 2, it
represents a good compromise between larger percentages of land cover classes which
can influence rockfall trajectories (“broad leaved,” “needle leaved,” “orchards” and
“vineyards”) and small percentage in the “artificial surfaces” class.

We stress that LiDAR data provide high resolution DEMs suitable for physically-
based slope stability models, including STONE and comparable models (Matas et al.
2017; Dorren et al. 2022; Jones et al. 2000; Agliardi and Crosta 2003). The strategy
was applied before, though with no distinction between DTM and DSM (Santangelo
et al. 2019). High-resolution elevation data are useful both to run morphometric ana-
lysis and locate potential rockfall sources and to carry out a detailed analysis of
boulders trajectories. In the present case, availability of both DTM and DSM data
allowed to include the effect of vegetation.

As one can see in Figure 6a and b, the areas most susceptible to rockfall events are
those located along the South and South-West coast of the island, characterized by
steep cliffs, the North, North-West and South-West steep flanks of Mount Epomeo
and the exposed sides of the hydrographic channels located in the South sector of the
island. This is a qualitative confirmation of the findings by Della Seta et al. (2011);
del Prete and Mele (2006); the polygons denoted by diffused rockfalls in the IFFI
inventory also overlap with the runout calculated with STONE. Moreover, Ischia is a
densely populated island (about 1,380 people per km,2 vs. an average of about 200
people per km,2 in Italy) and, as shown in Figure 6, it is characterized by the pres-
ence of potential rockfall sources on several places. Thus, built up areas (Figure 8a)
and roads (Figure 8b) could be affected by rapid phenomena as rockfalls.

Figure 6a and b shows the result of the overlap of cell-by-cells trajectory count
(Figure 6b) with roads and buildings on the island (Figure 1), to assess the possible
impact of rockfalls on infrastructure. We stress that, at this stage, trajectory count
only represents susceptibility maps and intersection with vulnerable infrastructure
cannot be considered as a risk map, because magnitude and the temporal components
are not considered up to now. Moreover, potential source areas were identified
through a statistical approach, derived from a morphometric analysis of terrain within
polygons mapped from Google EarthTM images. Therefore a field survey to ascertain
actual potential sources and would be useful to validate the inferred source areas. The
same goes for evidences on the field of actual deposition areas of rockfalls occurred
in the past.
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Rockfall sources were established on the basis of slope and relief values. Therefore, the
trajectory count output of STONE represent susceptibility maps, in which false positives
are often possible. On the other hand, to go beyond traditional susceptibility maps and
give the best possible estimate of rockfall hazard, one can consider a specific trigger, with
a specific probability in time – or return time, as we did in this work. We considered a
seismic trigger for rockfalls, thus approximating an assessment seismically-induced rock-
fall hazard – given that a magnitude component would still be missing. The rockfall tra-
jectories simulated on the basis of the PGA map for the major Casamicciola earthquake
of 1833, obtained from Rapolla et al. (2010), and corresponding to a return time of
475 years, show that the source map differs from the probabilistic source map described
in Figure 6 first of all for the number of potential sources: less sources have been recog-
nized on the whole island in the SRCseismic in comparison of that recognized in the base-
line (“static”) probabilistic source map (Figure 6). Furthermore the overall trajectory
count in the result is smaller than in the full simulation, as one can see comparing
Figures 6 and 9. Almost all of the earthquake-induced rockfalls are located on the steep
N-NW flanks of Mount Epomeo, on the SE and SW cliffs of the coastline.

6. Conclusions

In this study we performed a statistical analysis to infer the potential sources of rock-
fall on the Ischia island, their possible trajectories both in a “static” (trigger-

Figure 9. Simulation of seismically-induced rockfall trajectories, using a seismic trigger correspond-
ing to an event with return time 475 y and with a peak ground acceleration with the spatial pat-
tern of Figure 4. The model adopted in this work singles out rockfall sources on the basis of slope,
S, and values of PGA, as defined in Eq. (1) (Alvioli et al. 2022a, 2022b).
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independent) scenario corresponding to a susceptibility assessment, and in a seismic
shaking triggering scenario, going in the direction of seismically-induced rockfall haz-
ard. We performed our analysis using the 3D model STONE, which needs input data
of potential rockfall sources, geo-lithological characteristics of the studied area to
assign terrain parameters, and a DEM describing the topography. We can draw the
following conclusions:

� We improved an existing morphometric method to generalize expert-mapped rockfall
sources, previously applied at national scale and at 10 m resolution (Alvioli et al.
2021). In this work, at 2 m grid resolution, we included relief calculated with two dif-
ferent moving windows sizes along with slope angle, to generalize mapped polygons
to additional potential sources of rockfalls with a probabilistic method.

� Raw LiDAR data are useful to distinguish areas covered by tall vegetation, allow-
ing a more realistic simulation of rockfalls trajectories and their traveling distance.
This in principle can be reproduced in all of the areas where LiDAR points are
available from the Geoportale Nazionale, a large portion of Italy.

� Preliminary assessment of rockfall susceptibility in Ischia showed that the areas
with highest susceptibility are located along the N, N-W and S-W steep flanks of
Mount Epomeo, the S and S-W coast of the island. Many of the susceptible areas
overlap roads and built-up areas.

� We implemented a new method to model a seismic trigger for rockfalls, for phys-
ically-based rockfall simulations with models that are otherwise completely inde-
pendent from a specific trigger, and from time. This effective method allows to
approximate seismically-induced rockfall hazard.

Many of the methods presented here can be further improved, either with add-
itional modeling and/or with data from field surveys. In the inclusion of the effects of
vegetation, we simply modified the terrain parameters describing the static and
dynamic response in STONE to effectively account for the presence of vegetation;
future work may focus on calibrating the parameters, with proper field data. A
LiDAR campaign was performed recently by a few of us, and results will be reported
elsewhere. The survey will also be useful to locate actually unstable area, to further
constrain the maps of sources proposed here, and to pinpoint deposition areas or
individual blocks from past rockfalls, to constrain the parameters of the model.

Eventually, we stress that the method presented here is amenable for application
both a small, medium and large scale. While this work is an example application on
the small scale, the same approach was applied at national level (Alvioli et al. 2022a)
using ground shaking maps corresponding to different return times (Mori et al. 2020;
Falcone et al. 2021). Ground shaking maps corresponding to a return time of 475 y
was actually used to calibrate the seismic trigger for “static” rockfall sources adopted
here. The same method can be applied at intermediate scale using ground shaking
maps corresponding to specific earthquake events. The final aim of the seismic-trigger
method is the application on near-real time, with ground shaking maps obtained after
an earthquake event.
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Note

1. http://www.pcn.minambiente.it/mattm/en/
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