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Abstract 

Landslide susceptibility corresponds to the probability of landslide occurrence across a 

given geographic space. This probability is usually estimated by using a binary classifier which is 

informed of landslide presence/absence data and associated landscape characteristics. Here, we 

consider the Italian national landslide inventory to prepare slope-unit based landslide susceptibility 

maps. These maps are prepared for the eight types of mass movements existing in the inventory, 

(Complex, Deep Seated Gravitational Slope Deformation, Diffused Fall, Fall, Rapid Flow, 

Shallow, Slow Flow, Translational) and we build one susceptibility map for each type. The 

analysis – carried out by using a Bayesian version of a Generalized Additive Model with a multiple 
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intercept for each Italian region – revealed that the inventory may have been compiled with 

different levels of detail. This would be consistent with the dataset being assembled from twenty 

sub–inventories, each prepared by different administrations of the Italian regions. As a result, this 

spatial heterogeneity may lead to biased national–scale susceptibility maps. On the basis of these 

considerations, we further analyzed the national database to confirm or reject the varying quality 

hypothesis on the basis of a model equipped with multiple regional intercepts. For each landslide 

type, we then tried to build unbiased susceptibility models by removing regions with a poor 

landslide inventory from the calibration stage, and used them only as a prediction target of a 

simulation routine. We analyzed the resulting eight maps finding out a congruent dominant pattern 

in the Alpine and Apennine sectors. 

The whole procedure is implemented in R–INLA. This allowed to examine fixed (linear) 

and random (nonlinear) effects from an interpretative standpoint and produced a full prediction 

equipped with an estimated uncertainty. 

We propose this overall modeling pipeline for any landslide datasets where a significant 

mapping bias may influence the susceptibility pattern over space. 

 

Keywords: Integrated nested Laplace approximation (INLA), Landslide susceptibility, Slope unit, 

Model bias, Multiple landslide types 

 

1 Introduction 

A landslide inventory is a database of the location of past landslides and their characteristics. It 

may contain a unique identification code for each landslide recorded and related information about 

type of landslide, state of activity, date of occurrence and material involved (Galli et al., 2008; 
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Hervás and Bobrowsky, 2009). The inventory may be polygonal or point-based and it may 

correspond to an event-based inventory, in which all landslides share the same and simultaneous 

trigger, such as a storm or an earthquake (Iadanza et al., 2016; Cama et al., 2015; Fan et al., 2019; 

Loche et al., 2022b). The alternative can encompass landslides with a ill-defined time of 

occurrence, which one would refer to as geomorphological inventory (Guzzetti et al., 2012). 

National landslide inventories are geomorphological inventories in most cases. They may 

cover wide areas and thus, may require different data (orthophotos or satellite images) and/or 

research groups to undertake the mapping effort. Unfortunately, when different data and/or groups 

are involved in the task, each output inventory inevitably suffers from the different quality and 

completeness (Guzzetti et al., 2012; Tanyaand and Lombardo, 2020; Pokharel et al., 2021) brought 

by some degree of subjectivity. For instance, some areas may be preferentially mapped, either for a 

specific choice, a topographic limitation, or for other reasons (Bornaetxea et al., 2018; Bornaetxea 

and Marchesini, 2021). 

For example, Devoli et al. (2015) showed a significant presence of landslides around the 

Norwegian road network, for mapping at national scale is mostly undertaken by road authorities. 

The same preferential mapping was noted by Steger et al. (2021) in northern Italy or by Tanyaş et 

al. (2022) in eastern Turkey. Steger et al. (2016a) investigated bias effects due to specific land 

cover types, and Steger et al. (2016b) explored the same issue over a large portion of the Austrian 

territory, further extended to the whole Austria by Lima et al. (2017, 2021). Van Den Eeckhaut et 

al. (2012) and Kirschbaum et al. (2015) made similar considerations for the European and Global 

landslide catalogues, respectively. More recently, this topic has been also examined for the whole 

Chinese territory by Lin et al. (2021); Wang et al. (2022), who stressed the negative influence of an 

incomplete landslide inventory and the necessity to find ways to reduce the propagation of this 
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spatial bias onto the final susceptibility map. Notably, recent technological developments are 

contributing to reduce this issues through accurate aerial photograph interpretation (Karakas et al., 

2021) and automated landslide mapping routines (Meena et al., 2022). 

Nevertheless, in situation like Italy, where the national inventory is compiled by several 

groups and thus likely using different criteria, some degree of spatial biases are to be expected. 

Trigila et al. (2010) discussed the quality of the Italian Landslide Inventory (known as IFFI, Trigila 

et al., 2007) and its completeness for individual administrative regions. However, few articles have 

used the IFFI information for susceptibility purposes. Iadanza et al. (2016) and Segoni et al. (2015) 

used it as a reference to extract rainfall triggering thresholds, whereas Bianchini et al. (2013) and 

Hölbling et al. (2012) used it to validate slope deformation detected through persistent scatterer 

interferometry. Colombo et al. (2005) adopted it to empirically study the hazard in the north–

western Italian sector corresponding to the Piedmont region. Recently, Alvioli et al. (2021) 

adopted a subset of IFFI to partially validate simulations of rockfall trajectories. Only one case 

exists where the authors considered the whole IFFI at the national scale (Marchesini et al., 2014), 

and only for validation, not for training a model. 

Overall, the geomorphological literature lacks a unified/objective approach on how to deal 

with the propagation inventory biases to the resulting landslide susceptibility maps. The procedure 

presented in Steger et al. (2021) is currently the most comprehensive, and we will take inspiration 

from it in this work. 

In terms of modeling approaches, the literature on landslide susceptibility features a large 

number of modeling techniques. The most common approach still belongs to the binomial 

Generalized Linear Model (GLM) or, as more specifically referred, to the Binary Logistic 

Regression (BLR) case, as also reported by Lombardo and Mai (2018) and Reichenbach et al. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(2018). This method assumes that the distribution of landslide presences and absences across the 

geographic space can be explained according to a Bernoulli exponential distribution. The influence 

of the covariates is then captured via linear relationships. This is usually implemented in a 

frequentist approach with good performances (e.g. Yesilnacar and Topal, 2005; Nefeslioglu et al., 

2008; Rossi et al., 2010), which justifies the use of such a relatively simple model. Nevertheless, 

more complex statistical models are available nowadays, and they allow one to explore whether 

nonlinear relations between landslides and landscape characteristics exist. This is the case of the 

most common extension of the GLM framework, the Generalized Additive Model (GAM), already 

appeared in a number of applications (Goetz et al., 2011; Petschko et al., 2012; Goetz et al., 2021). 

However, even in such case, the frequentist framework does not allow to naturally account for 

uncertainties, which instead is an essential part of a Bayesian counterpart (Korup, 2021; Lombardo 

and Tanyas, 2021). 

Few landslide susceptibility studies feature a Bayesian implementation. Das et al. (2012) 

show one example of Bayesian GLM to assess the landslide susceptibility in the proximity of roads 

in a Indian case study. Analogous examples can be found more recently at catchment (Lombardo et 

al., 2020b; Luo et al., 2021) and regional scale assessments (Tanyaş et al., 2021; Loche et al., 

2022a). Recently, Lombardo et al. (2018a, 2019) proposed an extension of the Bayesian workflow 

pursued by the authors mentioned above by using a Log–Gaussian Cox Process to predict landslide 

counts per mapping unit, this being implemented in R–INLA (Lindgren and Rue, 2015; Bakka et 

al., 2018). 

Ultimately, another non–standardized approach in landslide science pertains to the way the 

space is partitioned i.e., which mapping unit is adopted. The vast majority of literature 

contributions opt for a regular mesh or grid–cell based subdivision (Sala et al., 2021; Arnone et al., 
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2016; Huang et al., 2017) whereas other researchers use Slope-Units (SU, Schlögel et al., 2018; 

Tanyaş et al., 2019a,b; Alvioli et al., 2021, 2022) or in fewer cases for other terrain unit 

subdivisions (Zêzere et al., 2004); Zêzere et al., 2017). Even more rarely, the differences induced 

by one or the other spatial partition are discussed (Erener and Düzgün, 2012; Alvioli et al., 2018; 

Ba et al., 2018; Jacobs et al., 2020; Doménech et al., 2020). 

The grid cell–based partition type is regular, easy–to–use, and it usually subdivides the 

landscape at a fine to very fine resolution. It is convenient because its resolution often coincides 

with satellite–derived data, but it leads to some operational issues. For instance, when a susceptible 

grid cell is surrounded by non–susceptible ones (Doménech et al., 2020), it is not straightforward 

to make decisions for landslide risk reduction nor for structural slope design. Conversely, SUs 

result from geomorphological processes which shape the landscape as much as the landslides, and 

have a physical correspondence on the terrain. Being medium–coarse in resolution, they require an 

aggregation step of the quantities one usually derives from satellite data. Moreover, they 

intrinsically express the morphodynamic behavior of a failing slope, thus SUs can be easily 

interpreted for master planning purposes. As a result of these advantages, although grid cells are 

still predominant in the literature, the number of SU–based applications has seen a constant 

increase in recent years, especially after automated and open access tools for SU delineation have 

been made available to the community (see, Alvioli et al., 2016). Considerations on the advantage 

of SU over grid-cells have been extensively discussed in Reichenbach et al. (2018). 

In this work, we investigate the landslide susceptibility of the Italian territory considering 

the three aspects mentioned above: spatial homogeneity/heterogeneity of landslide inventories, a 

solid approach to the susceptibility classification, and the use of SU as geomorphologically–sound 

mapping units. Specifically, we focus on examining possibly incomplete landslide inventories and 
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develop a selection procedure to ensure that the bias they may generate would not propagate onto 

the final susceptibility maps. We do so within a GAM–type model built over a SU partition of 

Italy. In doing so, we examine the (linear/nonlinear) covariate effects out of a suite of models that 

also feature an uncertainty estimation phase. 

 

2 Study Area 

The geomophology of Italy is unique and extremely diverse. Soldati and Marchetti (2017) 

prepared an outstanding compendium and overall description, where the national settings are 

dissected per region, geological history and anthropic influence. 

 

Figure 1: Geomorphological (a) and geological (b) settings of the study area. 

 

Figure 1 summarizes the large scale geomorphological and geological setting of the 

country. The great variety of morphological features is the result of an active geodynamic 

environment (Bosellini, 2017; Bartolini, 2010; Cowie et al., 2017), which determines a 

considerable variety in terms of outcropping lithologies (Bini, 2013). From a macroscopic, general 

and a naturalistic point of view, at least seven main geomorphological domains can be identified in 

Italy (Alps, Apennines, Po river alluvial plain, volcanoes, coasts, Sicily and Sardinia). This 

subdivision, however, is not able to depict the geomorphological differences that exist within these 

domains (Fredi and Lupia Palmieri, 2017). 

In a recent work, Alvioli et al. (2020) proposed a subdivision of the Italian territory into 

more than 300,000 Slope Units. In the same work, they analyzed the lithological and 

morphometric characteristics of 439 watersheds, of comparable size, covering the whole national 
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territory and including the slope units. A clustering procedure allowed Alvioli et al. (2020) to 

define seven different land classes, characterized by different combinations of lithotypes and 

morphometries. These classes were found to correlate well with terrain elevation and other pre–

existing morphological classifications of the territory (Guzzetti and Reichenbach, 1994; Drăguţ 

and Eisank, 2012). It is interesting to observe the spatial distribution of polygons belonging to the 

different seven classes (see Fig. 12 Alvioli et al., 2020). Although some of them are present mainly 

in specific geographical areas (e.g., the Alps), many others are widespread in different locations 

(from south to north and even on islands) and thus capture the geomorphological diversity 

mentioned by Fredi and Lupia Palmieri (2017). 

Morphology and lithology are widely used in the literature to explain the spatial occurrence 

of landslides (Reichenbach et al., 2018). Consequently, in the remainder of this paper, we assumed 

that landslide information from the IFFI inventories should be quantitatively comparable within 

the same class although located in different regions of the country. 

 

2.1 Landslide inventory 

IFFI is a landslide inventory maintained and updated through collaboration between national, 

regional and provincial institutions (Trigila et al., 2010). It contains more than 600,000 landslides, 

with a total density of about 2 landslides per square kilometer and with occurrence dates ranging 

from the year 1116 to 2020. The information contained in the database was obtained through 

different methods and approaches including photo-interpretation, analysis of pre-existing data, and 

field survey. For this work, we used the full IFFI dataset made available through the IdroGEO 

platform (Iadanza et al., 2021) and integrated with the IFFI data provided by the Tuscany Region 

(since they were missing in the IdroGEO platform). In particular, we used IFFI point data, in which 
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landslides are represented as points located on the highest part of the landslide polygons (when this 

polygon information is present) or simply represent the position of the landslide (when the 

landslide is small and/or polygon information is not available). 

According to the IFFI catalogue (link here) landslides are non–uniformly distributed over 

Italy. 

 

Figure 2: Administrative partition by region together with relative acronyms (a) and density map of 

the whole national landslide inventory (b). 

 

Figure 2 shows that mass movements are particularly dense in the Lombardia (LOM) 

region, and where the Alpine environment locally dominates the landscape. Moreover, a less dense 

but still large presence of landslides well aligns along the Appenine chain from the North to 

Central Italy, while landslide density appears to decrease in the South. 

In the Apulia (PUG) region, this appears quite reasonable, for the landscape is relatively 

gentle. However, the IFFI inventory strikingly characterize Calabria (CAL) Sicilia (SIC) and 

Sardegna (SAR) as scarce in number of landslides. This may be already an indication of a uneven 

inventory. For example, in Sicily, IFFI reports 4,571 landslides out of which 48 are classified as 

rapid flows. Yet, several studies have reported for the same region a much larger number of 

superficial and fast mass movements. For instance, Bout et al. (2018); Van den Bout et al. (2021) 

modeled 395 debris flows only within the extremely small catchment of Itala, north-eastern SIC. 

Right next to Itala, Ardizzone et al. (2012) also mapped several hundreds of debris flows within the 

Briga and Giampilieri catchments. Similarly, Cama et al. (2017) mapped 810 debris flows in the 

small catchment of Saponara, on the other side of the Peloritan belt. More generally, Ciampalini et 
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al. (2015) recognized diffused superficial deformations consistent with shallow landslides, over 

the whole Messina province. Thus, there maybe significant discrepancies between the information 

contained in the IFFI inventory and reality. 

Despite local differences in terms of landslide distribution per region, the mapping criterion 

behind the IFFI record is to assign a landslide type to each mass movement. This follows a non–

standard geomorphological description of the failing mass by reporting the failing mechanism and 

the velocity of the moving mass (Hungr et al., 2014, sensu). This leads to eight landslide types 

summarized as follows: 

1. Complex: this type includes landslides for which more than one failure mechanism was 

recognised. It corresponds to the Complex type described by Varnes (1978). 

2. DSGSD: this type corresponds to deep–seated landslides described by Guerricchio et al. 

(2012). 

3. Diffused Fall: this type does not strictly correspond to a single landslide type but combines 

Falls and Topples. Those who mapped the phenomena, could only recognise the talus 

without being able to discriminate the initiation mechanism. Thus, a “Diffused” type was 

created within the IFFI inventory to mark the two uncertain initiation processes. 

4. Fall: this type corresponds to the Falls described in Varnes (1978). 

5. Rapid Flow: this type encompasses flow–like mass movements, usually in unconsolidated 

materials and corresponds to the landslides characterized by a rapid to extremely rapid 

motion as reported in Hungr et al. (2014). 

6. Shallow: this type consists of non-deep mass movements which are usually triggered by 

strong meteorological stresses which result in gravel/sand/debris slide activations as 

described in Hungr et al. (2014). 
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7. Slow Flow: this type encompasses mass movements with a slow motion usually involving 

clayey material. It corresponds to the dry (or non-liquefied) sand/silt/gravel/debris flow 

and lateral spreading types described in Hungr et al. (2014). 

8. Translational: this type includes both the translational and rotational sliding as per Hungr 

et al. (2014). 

Figure 3 shows a stacked bar plot summarizing the regional distribution of the eight types 

of landslides listed above. The relative distribution of landslide types in different regions is very 

heterogeneous. Moreover, Figure 3 shows that in some regions certain landslide types are absent, 

or present in negligible quantities. One of the possible causes of this strong difference between 

regions can be linked to the physical characteristics of the territories. Certain types of landslides 

can only occur where given geomorphological conditions exist. However, among the causes of this 

heterogeneity, one may also consider the poor quality and completeness of the inventories, perhaps 

linked to deficiencies in terms of recognition, mapping and classification of landslides. 

 

Figure 3: Stacked barplot of the landslide type distribution by region. The relative counts have 

been normalized per region and expressed in percentage. The table shows the number of landslides 

in the national inventory, in each Region, and for each type of landslide. 

 

2.2 Mapping Units 

The SU partition used in this work was first presented in Alvioli et al. (2020). There, the authors 

use the r.slopeunits software (Alvioli et al., 2016) to delineate SUs over the whole Italy. The 

SU dataset (link here) contains 325,578 slope unit polygons of varying shape and size. Each 

polygon is intended to encompass locally homogeneous terrain, from the aspect direction point of 
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view, and thus it corresponds to a hillslope in the real world. The software used to delineate the 

polygons is adaptive, as it singles out SUs of different size in different geographical locations. Its 

input parameters are optimized using only elevation data. In particular, no landslide nor other 

terrain information enter the slope unit delineation procedure. This makes the SU map adopted in 

this work completely independent from the landslide inventory itself, and strongly related to the 

underlying topography, nation–wide. 

We stress here that Alvioli et al. (2020) constrained SU delineation to remove flat or near–

flat areas, obtaining a spatial partition associated with landslides, i.e., slopes. This is also a 

criterion which has already appeared in other studies (e.g. Tanyaş et al., 2019a,b) to focus the 

predictive model on slopes where instabilities may be expected uniquely on the basis or 

topographic roughness and to limit the dataset in size to those areas which require attention. 

The resulting SUs cover 224,032 km
2
 out of the total 301,093 km

2
 of the Italian territory. 

This indication in itself stresses that 77% of the country is topographically rough and potentially 

prone to landslide just from a simple physiographic criterion. 

Notably, combining the IFFI inventory and the SUs, each landslide type has a different 

number of SUs where at least one landslide fell into, which we report here: 26,960 Complex, 1,534 

DSGSD, 14,960 Diffused Falls, 13,202 Falls, 16,478 Rapid Flows, 21,173 Shallow, 28,540 Slow 

Flows and 52,587 Translational landslides. 

 

2.3 Explanatory variables 

Due to the large size of the study area, and to the different types of landslides, we selected a large 

suite of explanatory variables (covariates hereafter) to support the model training phase. A sub–set 

of the covariate set corresponds to terrain characteristics reported in landslide susceptibility studies 
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(Budimir et al., 2015). To those, we added few more properties to describe the lithological and 

pedological signal across Italy, as well as the shape characteristics of the SU partition. 

In Table 1 we list the whole set of covariates used to describe the landslide distribution 

across Italy. Notably, as also mentioned in Section 1, the use of SU requires an aggregation step to 

convert the distribution of covariates from the grid cell level to the SU level. Specifically, we used 

mean and standard deviation – rarely this is also done by considering a quantile description of the 

covariates (Castro Camilo et al., 2017; Amato et al., 2019). We opted to use the mean and standard 

deviation assuming these two statistical moments to be sufficient in describing the covariate 

distribution per mapping unit (see Lombardo and Tanyas, 2020). We used all the covariates as 

linear effects, with the exception of few cases, which are reported in Table 1, and for which we 

used non–linear effects; we provide an explanation on what this implies in Section 3. 

 

Table 1: Covariate list, reporting their original names, acronyms reference to literature and use 

within our GAM. When distinction between Mean and SD values within Slope Units is not 

provided, it implies that both the covariates were still computed and used linearly 

Name Acronym Reference Modeling Use 

Maximum Distance 

within SU 

MD (Forman and Godron, 1986) Nonlinear: random 

walk 

Maximum Distance/

SUArea  

MD/ Area  (Forman and Godron, 1986) Nonlinear: random 

walk 

Mean Slope Steepness Mean Slope (Zevenbergen and Thorne, 

1987) 

Nonlinear: random 

walk 

Region Region (Garson, 2013) Nonlinear: random 
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intercept 

SD of Slope within SU SD of Slope (Zevenbergen and Thorne, 

1987) 

Linear 

Eastness Eastness (Lombardo et al., 2018b) Linear 

Northness Northness (Lombardo et al., 2018b) Linear 

Planar Curvature Plan Cur (Heerdegen and Beran, 

1982) 

Linear 

Profile Curvature Prof Cur (Heerdegen and Beran, 

1982) 

Linear 

Relative Slope Position RSP (Böhner and Selige, 2006) Linear 

Topographic Wetness 

Index 

TWI (Böhner and Selige, 2006) Linear 

Distance to stream Dist2Stream (Arabameri et al., 2019) Linear 

Depth to bedrock (up to 

2.4 m) 

BDRICM (Hengl et al., 2017) Linear 

Bulk density BLDFIE (Hengl et al., 2017) Linear 

Weight % of clay particles CLYPPT (Hengl et al., 2017) Linear 

Weight % of sand 

particles 

SNDPPT (Hengl et al., 2017) Linear 

Weight % of silt particles SLTPPT (Hengl et al., 2017) Linear 

Below we provide a further description of the covariates listed in Table 1. 

Geomorphologically, we included Slope, Aspect (in its continuous form through Eastness and 

Northness), Curvatures, Relative Slope Position and Topographic Wetness Index (TWI). These 
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were computed from the 25 m DEM of Italy, EU-DEM, from Copernicus (link here). 

Pedologically and, to some extent, lithologically, we considered soil attributes at 250 m 

resolution, obtained from Soilgrids global datasets (Hengl et al., 2017). 

In addition, we believe that the shape of a SU itself may have an impact on landslide 

susceptibility, especially in this research, which aims at distinguishing several types of mass 

movements. To this end, we considered the Maximum Distance within an SU, calculated from the 

highest to the lowest point along an SU boundary. Similarly, we also computed a 

roundness/elongation index, computed as the Maximum Distance divided by the square root of the 

SU area. This index represents wide SUs when the ratio returns small values, and more and more 

elongated SUs as the ratio increases. 

Ultimately, we initially used the administrative regions partitioning the country as an 

additional covariate, under the assumption that each region separately carries a potentially biasing 

signal due to the mapping procedure adopted among different administrations. 

Further details on the actual implementation and covariates’ use are provided in the 

following Section. 

 

3 Bayesian Generalized Additive Model 

3.1 Bayesian models and inference with R-INLA 

We use Bayesian modeling, in the software R, with the R-package INLA (Rue et al., 2009). 

Bayesian modelling means that we have a prior probability distribution on all parameters, 

and after we make observations, we get posterior probability distributions on these parameters. 

Specifying the priors is part of model building, and can either be done by giving priors that have 

very little information in them, as in this paper, or priors that are based on expert knowledge. To 
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get a point estimate for a parameter, we find the mean of the posterior distribution, and to get the 

uncertainty, we find e.g. the 95% credible interval (CI), meaning an interval between the 2.5% 

quantile and the 97.5% quantile. 

INLA is a popular tool for specifying and inferring Bayesian models, and is used in a wide 

range of relevant applications (Opitz et al., 2018; Pimont et al., 2021; Titti et al., 2021). INLA is 

short for Integrated Nested Laplace Approximations, which describes the technical details on how 

to compute results in a fast way. 

 

3.2 Model setup 

We model the presence/absence of landslides y  through the Binomial likelihood, 

 Binomial( =1, )i iy n p  (1) 

where 
ip  is the Binomial probability. We model 

ip  through the frequently used logit link 

function, 

 = ,
1

i
i

i

p

p



 (2) 

and refer to   as the predictor. The predictor is where we model the relationship between the 

landslide occurrence and the covariates. We do this by specifying one effect, or model component, 

per covariate, and then adding these effects together. Let 

 
1 1 1 2 3 4= ( ) ... ( ) (region ) ( ) ( ) ( ),i m m ix i x i u u i u i u i         (3) 

where j jx  are the linear effect, describing the linear relationship of the covariates jx  and the 

predictor. For j  we use the default priors in INLA, which are uninformative flat priors. 

For 
1u , we specify a random intercept model, called an iid-model in INLA, 
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 2

1(region ) (0, ).i uu   

This means that we estimate one regression constant for each Italian region, independently from 

each other. 

For 
2 3,u u , and 

4u  we use the spline known in INLA as the random walk order 1 spline. 

We have spline models on the covariates MD for 
2u , MD/ Area  for 

3u , and Mean Slope for 
4u  

(see Table 2 for acronyms’ reference). For each spline, the covariate is divided into 20 intervals, 

and the vector of 
spline= (interval )j jv u  for =1,...,20j , assumes the form 

 
1 =i i iv v    (4) 

where 2(0, ).i v   

The prior for 
u  and 

v  are exponential distributions with mean = 9.2 , chosen based 

on the penalising complexity framework by Simpson et al. (2017). In addition the spline has been 

scaled to give better performance during Bayesian inference, according to Rue and Held (2005). 

 

3.3 Fit and Cross–Validation procedure 

We first fitted an initial reference model using the whole landslide dataset, separately for each 

landslide type. We did not select a balanced sample, for Petschko et al. (2014); Lombardo and Mai 

(2018) demonstrated that this operation induces distortions in the global intercept for any 

susceptibility model. We explored the distribution of the regression coefficients estimated for each 

region and for each landslide type, and investigated the regions for which the intercepts were 

consistently negative irrespective of the landslide type. We crossed this information with 

additional sources of information, to evaluate whether there were regions with a manifestly 

incomplete inventory. 
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On the basis of the regions we deem to have an incomplete inventory, we run three 

additional operations, reported below: 

 We initially excluded these regions from the analyses, and used the complementary 

regions, which differ for each landslide type, to calibrate a susceptibility model (bias–

reduced model). We validated by implementing a 10-fold cross validation (10-CV), in 

which each testing subset is mutually exclusive from the remaining nine. In other words, no 

SU are repeated across CV replicates. This allows one to explore the whole dataset 

disregarding autocorrelation issues among single CV folds (because same SU may enter 

different CV-folds). 

 Next, we implemented a simulation stage for which we generated a distribution of 1,000 

susceptibility estimates for each SU, also for the excluded regions. This simulation phase 

used the uncertainty estimation obtained from the Bayesian model, ensuring that the 

uncertainty consistently propagates both in the regions that have rich and poor landslide 

inventories. Further information on the simulation is in Appendix A. 

 Next, we extracted the mean and the 95% credible interval (CI); the latter is the distance 

between the 97.5th  and the 2.5th  percentiles of each distribution. Eventually, we prepared 

raster maps with the mean susceptibility for each landslide type and its uncertainty, for the 

whole of Italy. 

 

3.4 Performance evaluation 

We assessed the performance of the reference model as well as of the bias–reduced models; cf. 

Section 3.3. This was achieved considering threshold–independent and threshold–dependent 

performance metrics, widely used to assess the prediction skills of binary classifiers. 
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Specifically, the binomial GAM returns a distribution of estimated probability values for 

each SU. From each probability spectrum assigned to a SU, we extracted a single value 

representing the posterior mean. The ensemble of the posterior means extracted from all of the SU 

also returns a probability distribution, which we used crossing it with the observed landslide 

presence/absence instances to assess the goodness–of–fit and the prediction skill of susceptibility 

maps prepared here (Rahmati et al., 2019). 

For each landslide type, we took the corresponding probability distribution assigned at SU 

level and calculated Receiver Operating Characteristics (ROC) curves. These are cutoff–

independent metrics because the susceptibility spectrum is binarized many times, each time 

choosing a different probability threshold. Then, for each value of the cutoff, a pair or values is 

computed by comparing the observed presence/absence landslide information with respect to the 

binarized instances. These values consist of False Positive Rate (FPR) and True Positive Rate 

(TPR), from which the ROC curve can be obtained (Hosmer and Lemeshow, 2000). The numerical 

integral of the ROC curve is the area under the curve (AUC) and values above 0.5 represent the 

deviation of the predictions from the random case, i.e., a measure of performance. 

A similar framework is also valid for the cutoff–dependent metrics, with the difference that 

the cutoff is single–valued. The confusion matrix obtained by comparing predicted and observed 

presence/absence instances gives accuracy values for positives and negatives (modeled TP / 

Observed P, modeled TN / Observed N). We adopted the median posterior mean of the probability 

as a cutoff for cutoff–dependent metrics. We choose the median instead of the mean (as in Rossi et 

al., 2010; Lombardo et al., 2016), because our dataset is unbalanced (more slope units flagged with 

landslide absence than presence), resulting in a posterior mean distribution positively skewed 

(Frattini et al., 2010) rather than being normally distributed around the mean value, if we had a 
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balanced dataset (same, or comparable, number of landslide absences and presences). 

 

4 Results 

4.1 Reference model (within-sample) 

The fitting procedure produced satisfying results with cutoff independent, goodness-of-fit metrics 

constantly equal or greater than the excellence threshold according to Hosmer and Lemeshow 

(2000). In Figure 4, we report each ROC curve and AUC value, one for each landslide type. The 

minimum among all types corresponds to AUC = 0.77 for Shallow landslides, whereas the 

maximum is reached for Diffused Fall, with AUC = 0.92. 

 

Figure 4: Goodness-of-fit summary of the reference models built for each landslide type. 

 

As regards the cutoff–dependent evaluation of the goodness–of–fit, Figure 5 shows that 

accuracy, for the different landslide types, is spread from a minimum near 85% of correctly 

estimated landslide presences found both for Shallow and Translational to a maximum of 97% for 

Diffused Fall. These values indicate outstanding goodnees–of–fit performance. As for the capacity 

of our reference model to label stable SUs, the situation is very different. In fact, the percentage of 

matching cases between the number of observed and estimated SU where landslides are absent is 

relatively low, going from a minimum of around 44% for Translational to a maximum of 49% for 

DSGSD. At a superficial level, this should imply that the model performance is insufficient. 

However, we need to keep in mind that SU have been delineated by removing near–flat areas: i.e., 

they all represent rough topographies. As a result, a proportion of correctly predicted absences of 

approximately 50% implies that the model assigned a relatively high susceptibility to a large 
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number of cases where the current observation for these landslide is not to be there. However, this 

does not mean that they won’t occur in the future (or have already occurred but have not been 

identified and included in the inventory). Hence, the high susceptibility estimates are very 

reasonable especially in a territory that has been suffering from widespread landsliding as long as 

these surface processes have been recorded (Rossi et al., 2019; Lombardo et al., 2020a). 

 

Figure 5: The left panel shows the confusion plot (see Lombardo et al., 2015), constructed via the 

percentage of Observed TP and fitted TP against the percentage of Observed TN and fitted TN (for 

each landslide type). The right panel reports the error rates (for each landslide type). 

 

4.1.1 Fixed Effects 

Figure 6 summarized the estimated fixed effects. The graphical representation of these consists of 

the marginal distributions for each covariate used linearly in our model, for each landslide type. 

Further information on the implications and possible interpretation about the sign and range of 

each distribution will be presented in Section 5.1.1. There, particular attention will be given not 

only to the sign and range of each fixed effect but also to the relation and possible similarity that 

types of landslides present with respect to each other. 

 

Figure 6: Fixed effects expressed as marginal distributions for each landslide type. The meaning 

and information about the acronyms is explained in Table 1. 

 

4.1.2 Random Effects with adjacent–class–dependency 

In this section we present a graphical summary of the random effects we implemented with a 
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random walk structure. We remind, here, that we applied a random walk to ensure that MD, MD/

Area  and Mean Slope would retain the ordinal structure of their original continuous distribution 

(cf. Section 3.2 for definitions). 

Each of the the random effect mentioned above is presented below in Figures 7, 8 and 9. 

These highlight their respective nonlinear contribution for each landslide type. Further information 

on the implications and possible interpretation about these nonlinear effects will be presented in 

Section 5.1.2. There, particular attention will be given not only to the shape of the nonlinear 

functions but also to the relation and possible similarity that types of landslides present with 

respect to each other. 

 

Figure 7: Maximum distance within an SU effect on each landslide type susceptibility. The effect 

is modeled as a random effect estimated over 20 classes with adjacent dependency. Thick colored 

lines represent the posterior means whereas the colored dashed lines indicate the posterior 95% 

credible interval. 

 

Figure 8: Maximum Distance/ Area  (roundness/elongation) effect on each landslide type 

susceptibility. The effect is modeled as a random effect estimated over 20 classes with adjacent 

dependency. Thick colored lines represent the posterior means whereas the colored dashed lines 

indicate the posterior 95% credible interval. 

 

Figure 9: Mean Slope effect on each landslide type susceptibility. The effect is modeled as a 

random effect estimated over 20 classes with adjacent dependency. Thick colored lines represent 

the posterior means whereas the colored dashed lines indicate the posterior 95% credible interval. 
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4.1.3 Random Effects with multiple regional intercept 

In this section we present results obtained using a multiple intercept approach, i.e. calculating an 

intercept for each region, which helped to asses the level of completeness of the regional landslide 

inventories. 

Figure 10 shows each multiple intercept. The characteristic that stands out the most is that 

the credible intervals are extremely narrow, irrespective of landslide type. We observe that the 

value of the multiple intercept can change significantly within the same region, when different 

types of landslides are considered. We also note that for some regions, as Piedmont (PIE), 

Lombardy (LOM) and Liguria (LIG), coefficients are almost always positive, while for Sardinia 

(SAR) and Apulia (PUG) they are frequently negative. Grey dashed lines in the plots correspond to 

the zero reference level below which a negative correlation between landslides presence and 

administrative region exists. Reasons for this negative correlation may be geomorphological (a 

given type of landslides is not expected in a given region), or caused by the scarce quality and 

completeness of the regional inventory. Section 4.2 illustrates additional criteria to decide which 

region had incomplete landslide inventories. 

 

Figure 10: Posterior distribution of the multiple regional intercepts for each landslide type. 

Because the estimated uncertainty is particularly small, the posterior mean values are shown as 

diamonds whereas the 95 % credible intervals are depicted as black vertical bars. Dashed grey lines 

indicate the zero line along which coefficients play no role with respect to the modeling outcome. 

 

4.2 Inventory completeness/incompleteness considerations 
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To understand which regional inventory could be considered complete at a sufficient level, we 

revised the inventories through random heuristic checks, examined the information provided in 

technical reports (see here for regional reports and here for the national report), and combined this 

qualitative expert knowledge together with more quantitative considerations driven by data 

displayed in Figures 10 and 11. 

 

Figure 11: Characteristic density distribution of the Italian into geomorphological classes obtained 

through clustering. This is overlaid with the density of of the landslides types per region and per 

cluster class. 

 

Figure 11 includes the map resulting from the spatial geomorphological clustering 

proposed by Alvioli et al. (2020). The seven clusters are representative of geomorphologically and 

lithologically homogenous conditions across Italy and they are based on the very same SU 

partition used in this work. From a landslide perspective (including the eight IFFI types), we 

should expect an analogous signal of landslide densities per clusters, irrespective of the region at 

hand. This is confirmed, for example, by comparing, at cluster level, the densities of Slow Flow in 

Basilicata (BAS, southern Italy) with those in Emilia Romagna (EMR, Northern Italy) or the 

densities of Fall in Sicily (SIC, southern Italy) with those in Trentino Alto-Adige (TAA, Northern 

Italy). The comparison confirms that in areas that share the same characteristics from a 

morphological and geological point of view, the density of landslide phenomena of the same type 

is at least comparable. Thus, we considered an indication for a potentially incomplete inventory 

any strong deviation from the landslide density distribution in the clusters’ polygons, associated 

with a strong negative intercept in Figure 10 and through heuristic checks and report descriptions. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The results are summarized in Table 2, where the teal cells and red cells indicate, respectively, 

reliable inventories and incomplete inventories and numbers represent the mean value of the 

multiple intercept values. Hence, for the next modeling procedure, we selected the teal region for 

training and the red regions for model transferability. 

 

Table 2: Values of the multiple intercept for the different regions and landslide types. The teal 

colorcode corresponds to regions that appeared consistent in terms of landslide densities per 

geomorphological clusters (see Alvioli et al., 2020) and multiple intercept. The red color indicates 

a significant deviation from this trend and thus we consider it an indication for a incomplete 

regional inventory. In other words, for the next modeling procedure, we used the teal region for 

training and the red regions for model transferability. 

Regions Complex DSGSD Diffused 

Fall 

Fall Rapid 

Flow 

Shallow Slow 

Flow 

Translational 

ABR -0.22 0.28 -0.75 -0.70 -0.25 -1.01 0.19 -0.34 

BAS -1.71 -0.33 0.08 -0.05 -0.88 1.20 0.58 -0.96 

CAL 0.07 -0.11 -0.78 -0.72 -1.27 -0.08 -1.79 -0.50 

CAM 0.45 0.02 -0.67 0.41 1.43 -1.34 1.21 -0.14 

EMR 2.24 -0.26 -0.91 -0.52 -0.73 -2.25 1.66 1.80 

FVG -0.98 -0.35 1.35 0.66 0.01 0.67 -0.57 0.43 

LAZ -0.77 -0.22 1.06 0.55 0.52 0.37 -0.17 -1.31 

LIG 1.18 1.27 0.17 0.26 0.19 0.28 -0.02 0.31 

LOM 0.77 -0.19 3.88 1.09 3.34 2.28 0.37 1.78 

MAR 1.01 1.06 -0.83 0.87 -0.82 1.03 1.50 0.54 
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MOL 1.72 -0.10 0.39 0.75 1.12 1.02 1.50 0.45 

PIE 0.28 0.71 0.87 0.60 0.58 0.79 0.58 0.43 

PUG -1.22 -0.07 -0.26 0.56 -0.60 -1.41 -1.39 -1.93 

SAR -2.20 -0.55 0.31 -0.75 -1.60 -1.57 -2.33 -2.76 

SIC -0.12 -0.55 0.51 -0.31 -0.39 0.95 -0.40 -1.36 

TAA -0.39 -1.03 -1.92 -0.79 -0.33 0.12 -0.29 0.63 

TOS -0.55 0.56 -1.02 -0.12 -1.61 0.38 -0.96 0.26 

UMB 1.09 -0.32 1.02 -0.37 0.26 -0.88 0.59 1.69 

VAO 0.48 0.61 -1.70 -1.29 0.71 -0.32 0.02 0.52 

VEN -1.13 -0.41 -0.78 -0.12 0.33 -0.19 -0.26 0.46 

A quick example of the selection procedure can be seen in the plot concerning Shallow 

landslides, as shown in Figure 11. The total height of the bars depends on the landslide density 

measured in individual clusters, represented with the same colors as in Alvioli et al. (2020). Data 

show that Shallow landslides occur quite homogeneously in all of the different clusters (apart from 

a scarce presence in cluster 1). This is confirmed by data of many regions (including BAS, LOM, 

SIC, CAL, TOS) where, despite the total densities can be different, the ratio between the densities 

in the different clusters remains quite constant and comparable to the national average. We 

interpret this behaviour as an indication that surface landslides were suitably mapped in these 

regions. However in other regions (EMR, PUG, SAR, VAO and CAM), information about shallow 

landslides is very scarce or absent (on all clusters). Since in these regions the values of the multiple 

coefficient are also negative or very negative, we considered them affected by significant problems 

of completeness and quality of the shallow landslides inventory. To support this statement, Figure 

11 also reports the number of landslides in the top horizontal axis (note that the count of landslides 
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for EMR is zero). 

 

4.3 Final fits and simulations 

After selecting the regions for which the inventory appeared incomplete, for each landslide type, 

we fitted a binomial GAM framework on the complementary regions. To test it, we run two 

complementary procedures. On the one hand, we fitted once again the same models as before (i.e., 

same covariates, same choice of linear and non–linear effects) but constraining them solely on the 

regions that we deemed to have a complete, or at least representative, landslide inventory, for each 

landslide type. This operation ensures the ability to simulate over the regions with incomplete 

inventories (for more details, see Appendix A). On the other hand, we also performed a standard 

10–fold cross–validation procedure using the regions with complete inventories. This operation 

ensures that we can assess our out–of–sample predictive skill, still within regions where the quality 

of landslide data is considered reliable. 

Below, we present the performance, first, and the simulations, later, illustrated with maps. 

 

4.3.1 Cross-validation performance 

In analogy to the information provided for the reference model, we summarized the ROC curves 

and their AUC for each landslide type, through a 10-fold CV. Figure 12 reports 10 ROC curves, 

and the corresponding AUC variability. The out–of–sample performance occupies a range 

between acceptable (0.7 <  AUC <  0.8) and excellent (0.8 <  AUC <  0.9) binary 

discrimination, according to Hosmer and Lemeshow (2000), with a minimum mean AUC 

estimated for Translational landslides at AUC = 0.766 (and a very low variability measured in a 

standard deviation of 0.004). This value is significantly distant from the lower end of the 
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acceptable range and it is actually close to the outstanding one. Similarly, the maximum mean 

AUC corresponds to AUC = 0.887 (standard deviation = 0.013). It was estimated for DSGSD and 

it is close to the outstanding performance class limit (0.9 <  AUC <  1.0). This overview 

highlights suitable and robust out–of–sample performances for models trained within regions 

where landslide information is at its best within Italy. 

 

Figure 12: Prediction skill summary obtained from a 10-fold CV run for a set regions which we 

assumed have a complete landslide inventory, for each landslide type. 

 

Nevertheless, ROC curves and AUC values only provide a lumped overview of model 

performances, where the returned value is independent from the probability cutoff one may 

choose. Thus, in analogy to the information provided for the reference model, we also computed 

the confusion matrix for each of the ten CVs, setting the probability threshold at the posterior 

median probability. The results, shown in Figure 13, exhibit an interesting behavior, similar to the 

one we observed in the reference case. Binomial GAM is able to single out very efficiently SU 

where landslides occurred. This is proved by very high percentages of TP / Observed P, always 

above 80%, irrespective of landslide type. However, when crossing the estimated probabilities 

with the observed absences, the model seems to perform poorly, both in terms of TN / Observed N 

and in terms of Error Rates. This is a crucial point for us to be shared, for we need to recall that the 

Slope Unit partition used here does not include any flat or near–flat condition. Therefore, it is 

specific of rough landscapes where landslides may well occur in the future, but they have just not 

been observed yet. This may be the reason why locations where landslides are absent may have 

been estimated with a very high susceptibility, the combination of which is responsible for the low 
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accuracy for the negative instances as well as the high error rates. In other words, when the 

percentage of TN / Observed N is confined between 38% and 50%, irrespective of the landslide 

type, this implies that our susceptibility models have deemed the complementary 62% and 50% of 

the examined territory to be prone to slope failures. 

 

Figure 13: The left panel shows the confusion plot (see Lombardo et al., 2015), constructed via the 

percentage of Observed TP and fitted TP against the percentage of Observed TN and fitted TN (for 

each landslide type). The right panel reports the error rates (for each landslide type). This plot has 

been obtained from a 10-fold CV run for a set regions which we assumed have a complete 

landslide inventory, for each landslide type. 

 

4.3.2 Simulations for susceptibility mapping 

Figures 14 and 15 show maps with the results of simulations (cf. Section 3.2). The former 

corresponds to the mean of the 1,000 simulations generated for each landslide type and for each 

SU. The latter is the width of the 95% CI uncertainty around the mean susceptibility estimates. 

These two elements represent the variability in how likely a certain landslide type may occur 

across the Italian territory. Examining Figure 14 one can clearly see the relative dominant pattern 

of Diffused Fall, DSGSD, Fall and Rapid Flow types over the Alps. This is a particularly 

interesting result because we did not strictly use a spatial model. Let us recall that a definition of a 

spatial model boils down to a model informed of the locations that the response and explanatory 

variables occupy across the geographic space. For instance, an interpolator is a spatial model by 

definition because the interpolation routine is based on the distance between a pair or multiple 

locations where a given process is measured. Here however, our model is not informed of where 
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slope units are located across the Italian territory. Conversely, the only element expressing spatial 

variation resides in the variation of the binary data and of the covariate domains. In other words, 

our model is not fully spatial because it does not constrain SUs to exhibit susceptibility values that 

are more similarly within a given neighborhood and are more different for SUs that are far apart. 

Nevertheless, even if the model is not technically a pure spatial model, the way it characterizes the 

Alps consistently highlights the highest susceptibility estimates for the three landslide types 

mentioned above. This is a geomorphologically sound result, which well aligns with another 

observation. In fact, for the Complex, Shallow, Slow Flow and Translational types, the dominant 

susceptibility pattern in each map corresponds to the Appenine belt. 

 

Figure 14: Mean simulated susceptibility maps per landslide type. 

 

Figure 15: Uncertainty measured with a 95% credible interval of the simulated susceptibility maps, 

one per landslide type. 

 

5 Discussion 

5.1 Additional model interpretation 

This section is subdivided into two, each one presenting the interpretation of each reference model 

components, these being grouped into linear (fixed) and nonlinear (random) effects. 

 

5.1.1 Interpretation of fixed effects 

Some interesting patterns arise examining the linear components (cf. Section 3.2) included in our 

approach. Figure 6 shows the posterior marginal distributions of each covariate assumed as a linear 
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effect and for each landslide type. Specifically, we displayed the covariates for which the marginal 

distribution was significant 2.5 and 97.5 percentiles of the regression coefficient distribution share 

the same sign for at least one landslide type. The figure summarizes one of the main strengths of a 

Bayesian susceptibility implementation, for regression coefficients are assigned their posterior 

mean and its associated uncertainty measured as the 95% credible interval. 

The fixed effects change in sign and amplitude for different landslide types. And, for 

landslide type that share some degree similarity, this is much less pronounced than for landslide 

types with a completely different failure mechanism. 

For instance, the fixed effects estimated for Fall and Diffused Fall often appear to overlap 

while markedly differing from Flows and Shallow mass movements. This is the case for Mean 

Northness where both the posterior distribution of Fall and Diffused Fall are located to the left side 

of the plot and share a negative regression coefficient, respectively centered at approximately -0.06 

and -0.12. Conversely, Translational and Slow Flow were estimated with a positive regression 

coefficient, respectively centered at around 0.08  and 0.1 . These results look reasonable as falls 

may be influenced by large temperature variations related to the southern orientation (Loche et al., 

2021), while Translational movements and Slow Flow may be positively correlated with higher 

soil moisture, which is favoured by lower solar radiation. Another striking example can be seen in 

SD of Slope for which the regression coefficient of Fall and Diffused Fall is positive; the existence 

of a cliff, where these landslides typically occur, implies a large variation in slope steepness within 

an SU. On the contrary, all the other landslide types are either not affected or even negatively 

affected by the variation of slope steepness. This is the case for DSGSD, a landslide type with a 

posterior mean centered at zero, for which the buried failure surface may not be sensitive to 

variations at the surface. And it is also the case of Rapid Flow, Shallow, Slow Flow and 
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Translational, which share a negative regression coefficient, likely due to the fact that rough SUs 

may host internal barriers opposing the initial failure initiation movement. Such consideration has 

been reported already in the literature. For instance, Tanyaş et al. (2017) showed that frequency of 

landslides are higher for low roughness values, hence for low SD of Slope. They observed that the 

frequency proportionally decreases for increasingly rougher topographies, and they justified this 

observation by assuming that roughness may be a proxy for rocky outcrops, where low SD of Slope 

implies softer surface materials or soils and high SD of Slope implies rocks or just material with 

higher geotechnical strength. 

A similar situation, where predominantly superficial landslide behave consistently, exists 

for the regression coefficients estimated for the mean bulk density (BLDFIE). In this case, 

Translational, Slow Flow, Shallow and Complex landslides all share a positive marginal effect of 

BLDFIE on landslide susceptibility (Adams and Sidle, 1987). 

Clearly, this level of straightforward interpretation does not apply to every fixed effect and 

every landslide type. In such a complex model, most of the estimated fixed effect are 

geomorphologically reasonable and, most importantly, lead to excellent goodness–of–fit 

performance. 

 

5.1.2 Interpretation of random effects with adjacent-class-dependency 

In Figure 7, MD (or the maximum distance within an SU) appears to behave nonlinearly, justifying 

the choice of the their use as random effects. Looking at the eight trends, it becomes clear that high 

susceptibility values correspond to large values of the slope units length. However, it is also 

evident that Complex, Rapid Flow, Slow Flow and Translational have a marked (near exponential) 

increase in their respective regression coefficient for MD values greater than 10,000 m. 
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Conversely, DSGSD, Diffused Fall, Fall show a much milder trend, with Shallow being the only 

landslide type in between the other two groups. 

We can give a geomorphological interpretation for the observations described above. In 

fact, complex/translational movements, slow and rapid flows can be large in size and need 

relatively large slopes (long, or wide) to occur. Falls and diffused falls can also occur on small 

slopes. DSGSD mainly depends on the presence of tectonic discontinuities, unloading of glacier 

retreat and seismic activity, thus being relatively less related to slope size and local morphology 

and more related to conditions that involved fully-coupled thermo-hydro-mechanical behaviour of 

the materials (Segui et al., 2020; Scaringi and Loche, 2022). 

In Figure 8, MD/ Area  (or the elongation/roundness index of each SU) also appears to 

behave nonlinearly. Similarly to the previous random effect, the behavior of the SU elongation 

appears to have some degree of consistency across certain landslide types, such as DSGSD, 

Diffused Fall, Fall, Rapid Flow and to some extent also Shallow. In these cases, the effect of MD/

Area  is negligible up to a threshold MD/ Area  = 4 (we recall here that this index is 

dimensionless) after which at increasingly elongated SUs the probability of the corresponding 

landslide type would drastically increase. 

Elongation of the slope units can be in the direction of the surface drainage, or even 

perpendicular to that. We observe that Rapid Flow and DSGSD can be correlated with SUs parallel 

to the drainage, while wide and short, steep slopes can accommodate mainly Diffused Fall and 

Fall. 

Conversely, Complex, Slow Flow and Translational landslides share a common behavior 

and appear to correlate poorly with elongation of the slope units. We conclude that these types of 

landslides mainly occur inside large semi–circular slopes. 
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The last covariate modeled with a random walk is Mean Slope, for which we also found a 

nonlinear influence on the estimated susceptibility, irrespective of landslide type. As in the 

previous cases, more than one landslide type behaves similarly to others. DSGSD and Fall appear 

to be analogously influenced by the Mean Slope of the SU, with a negative effect which remains 

essentially constant up to a threshold of approximately 40 degrees, where the regression coefficient 

drastically increases. As for the remaining landslide types, they all start with a strong negative 

negative regression coefficient at low values of steepness and they increase sharply up to around 

10 degrees, above which the regression coefficient does not exhibit large variations up to 40 

degrees. Then, at higher steepness values, they increase again. 

We believe that negative correlation, with low slope values, and positive correlation, with 

large slope values, of most landslide types is expected and geomorphologically consistent. The 

behaviour of Fall for low slope values can be ascribed to presence of talus, which can accumulate 

in almost flat areas. 

These two type of behaviors of the mean slope steepness in a GAM framework (one 

smoother and one more sigmoidal in shape) have already been shown in the literature. For 

instance, Knevels et al. (2020) reports a smooth increase of the regression coefficients which is 

very similar to the behavior shown in Figure 9 for Rapid Flow or Diffused Fall. Interestingly, the 

authors worked in Austria, on the other side of the Italian Alps where rapid flows and diffused falls 

are mostly concentrated, in Italy. 

 

5.2 Overall summary 

Most of the studies of landslide susceptibility existing in the literature typically takes landslide 

inventories and rely uncritically on them to fit data–driven models. These are often built without 
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questioning their completeness/incompleteness nor the implications that one or the other would 

lead to in terms of probabilistic results. This is not the case for a relatively small number of 

contributions (Steger et al., 2016b; Lima et al., 2021; Lin et al., 2021; Steger et al., 2021; Pokharel 

et al., 2021) where the bias induced into the susceptibility estimates by incomplete inventories is 

rigorously researched in depth. However, even the authors mentioned above, have not examined 

regional biases to the extent we propose here. What they propose is to spatially capturing the 

source of bias and remove it from the predictive equation by zeroing-out the regression coefficients 

estimated for the biasing covariate. However, this operation is not the only solution one can opt for. 

Our work takes deep inspiration from the papers cited above, and extends on the 

framework they propose by first introducing a spatially-varying regression constant examined per 

regional administration. Then, on the basis of the full distribution of the estimated regression 

coefficients per region and per landslide type, we carried out an extensive search, both qualitative 

and quantitative, to select best locations to train a susceptibility model (GAM) and transfer the 

resulting predictive function onto areas characterized by poor landslide inventories. We also 

provide a graphical sketch of the modeling design we opted for in Appendix B. 

The choice of a Bayesian framework also provides further insight into the full posterior 

distribution per landslide type, allowing for simulating landslide occurrences with a rich 

probabilistic description, summarized through the mean behavior and its uncertainty. In turn, this 

allows to provide end users of the susceptibility assessment with a full suite of information upon 

which they can make decisions. 

In fact, knowing if a given slope is likely to be unstable on average does not tell the whole 

story. It is the combination of this information together with the uncertainty level that ensures a 

much more reliable decision. A slope with a high mean probability of landslide occurrence but 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



with an extremely large uncertainty may not be the right investment for slope stabilization 

practices. On the contrary, a slope with high mean probability of landslide occurrence, but lower 

than the ideal one mentioned above, associated with very small uncertainty, may be a safer target 

for stabilization investments. The same is valid in the opposite situation, a slope with a very low 

mean susceptibility but with very high uncertainty should not be overlooked, whereas one could 

safely consider situations where the posterior mean and uncertainty in the susceptibility estimates 

are both small. In the context of the numerous landslide types we examined, this modeling protocol 

informs the potential user on the full probabilistic expectation of which mapping unit are unstable 

to each of the eight types. It is important to stress that usually country-scale susceptibility maps are 

partitioned into coarse mapping units. Here, we indeed modeled the whole Italian territory 

although the resolution of the mapping unit we opted for is kept quite high. This returns a product 

with high resolution as well as a full coverage of the Italian landscape. Therefore, we envision it 

use in a consistent manner irrespective of the given administration. 

It is important to note that the fine resolution of the SUs, also implied a large computational 

burden. Below we provide a brief overview of the machine characteristics where we have run our 

modeling protocol as well as an indication of the associated computational times. Specifically, we 

have run our analyses on two machines, both equipped with 64 cores and 300 GB of RAM. The 

calibration phases approximately required one hour for each landslide type, while using a 

multi-threading routine spread over ten threads. As for the 10-fold cross validations, the 

computational time reached roughly ten hours for each landslide type. Finally, the 1000 

simulations and the calculations of mean and 95% CI width, required approximately one day for 

each landslide type. 

The mean and 95% CI of our 1000 simulations is available in an open repository accessible 
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at this link. This is meant to ensure full transparency and to share the information in a GIS format 

that can be used not only for national scale assessments but that can be easily queried also at the 

regional level and potentially even at the catchment scale. 

 

6 Conclusions 

The strategy proposed here is currently the most comprehensive example of landslide 

susceptibility analysis, in a situation where incomplete landslide inventories may affect the model 

estimates over multiple landslide types. It consists in a continuation of the research started with 

Steger et al. (2016a) and continued in (Steger et al., 2021). It resulted in the first bias-free landslide 

susceptibility model for the whole Italian territory and for each landslide type reported in the IFFI 

inventory. Overall, we consider the eight susceptibility maps to be a complete tool for experts in 

the administrations to improve landscape management practices but also simply to make better 

decisions on which solution can become operational to reduce landslide risk, with an approach that 

can be tailored to the probabilistic expectation of a specific landslide type to occur at a given 

location. 

Aside from these aspects, a number of extensions of the framework we propose can already 

be envisioned. First of all, we tested the effect of biased landslide inventories onto the 

susceptibility because the latter is the most common result sought through data-driven models. 

However, a more informative data-driven framework can lead to estimate the landslide intensity 

instead (here interpreted as number or size of landslides per mapping unit). In the context of 

landslide intensity no study is available so far to elucidate on what implications the use of biased 

inventories may lead to. Thus, we consider a worthy venue for future scientific studies to elaborate 

on what partial landslide information can induce in the estimation of landslide counts or sizes. 
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These susceptibility and intensity models separately constitute two fundamental elements 

of the hazard definition. Thus, an important extension to the framework we propose here also 

includes the assessment of what biased inventories can induce over the hazard definition. Along 

the same direction, even the temporal aspect of the hazard notion can exhibit strong biases. For 

instance, landslides area obviously being mapped better and more frequently now as compared to 

the past, because the resolution of the satellite scenes is higher and their acquisition frequency has 

also increased. However, no study so far has explored what a temporally biased model can induce 

over dynamic susceptibility models or just rainfall threshold estimates in early warning systems. 

Overall, data quality and inequality is still an issue in data-driven models applied to the 

landslide context. We believe this to be a problem that will decrease with time, as automated 

landslide mapping procedures are becoming increasingly common and more importantly reliable. 

Until these automated tools will become the standard though, analogous problems to the one we 

faced in this article will still affect most of the landslide predictive models. This will be especially 

valid for models built on the basis of a collection of different inventories, from different sources, 

for different purposes and with different thematic supports. In all these cases, we suggest a similar 

solution to the one presented here, in the hope of removing negative effects from the model 

outcomes. 

Before concluding, we stress again that to promote reproducible results and to allow any 

reader to access the susceptibility patterns we produced in their raw form, we are sharing the eight 

mean susceptibility maps and their uncertainty at this link: 

https://geomorphology.irpi.cnr.it/tools/slope-units. 
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A Summary of simulations 

To simulate over regions with incomplete inventories, we implemented the following procedure. 

Fitting one susceptibility model per landslide type – solely on the basis of regions that have a 

complete inventory – allowed us to estimate the posterior distribution of each regression 

coefficient (global intercept, fixed and random effects; cf. Section 3.2). From each posterior 

distribution, we then extracted 1,000 samples, which we then combined additively in a first step, to 

estimate the log–odds for regions with a complete inventory. Subsequently, we used the very same 

1,000 samples extracted in the previous step, but determined the predictive equation in regions 

with incomplete landslide inventories. This operation ensured that we have covered the whole 

Italian territory, and that for each SU, we would have simulated 1,000 log–odds values, which we 

assumed to be sufficient to describe the mean behavior of landslide occurrences as well as the 

uncertainty around it. Ultimately, we converted the log–odds into probability values by using the 

logit link function, Eq. (2), and stored just three parameters out of the 1,000 susceptibility values. 

These three parameters correspond to the mean, 2.5 and 97.5 percentiles. The difference between 

the percentiles gives the width of the 95% credible interval. 
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Figure 16: Graphical sketch of how we performed the simulations from the regions with a 

complete inventory to regions with an incomplete one. This figure has been modified from Luo et 

al. (2021). 

 

It is important to stress a technical requirement one should always consider when 

simulating over unknown regions while using a random walk (as we did for the mean slope 

steepness for instance). In such cases, the procedure involves binning the domain of the original 

covariate into a fixed number of classes on which we then apply the RW1 type model, imposing 

adjacent class dependence. However, if the domain of the original covariate between the training 

and the simulated area are very different, then careful choices must be made. To clarify this 

concept with the reader we can take the mean slope steepness for instance. If the area where we 

trained the model (with complete inventory) has a range of slope steepness values bewtween 0 and 

30 degrees, and the area where we want to simulate for (with incomplete inventories) has a range of 

slope steepness values bewtween 0 and 60 degrees, then the model would not know what is the 

effect for values greater than 30 degrees and up to 60 degrees in the simulation phase. In a linear 

model this issue does not exist as one assumes the effect to be constant irrespective of the value 

range. However, for random walk models two reasonable choices are available. The first choice, 

the most conservative, is to fix the same regression coefficient estimated for the 30 degree class up 

to the 60 degree one. The other option is to consider only the last three or four classes and then use 

a linear interpolator to extend the regression coefficient estimates up to the desired range. 

However, this implies a certain degree of expert choice on how many classes to consider for the 

interpolation; two, three, four or more could all be reasonable choices depending on the specific 

trend one observes. In our case, we have opted for the first option to contain the amount of 
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subjective influence to our model. We have maintained this choice for the the RW1 type model we 

used (mean slope steepness, slope unit maximum distance and slope unit elongation/roundness 

index). 

 

B Graphical summary of the modeling protocol 

Below a sketch of the sequence we we followed to perform the analyses in this work. 

 

Figure 17: Graphical sketch of the modeling design we opted for. 
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