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Abstract

The majority of landslide susceptibility and hazard zona-
tions are implemented with statistical methods, espe-
cially on large scales: mostly because the data needed
for physical simulations are only available in small areas.
Physically–based simulations for slope stability are con-
ceptually different from widely used statistical approaches.
Both methods have specific advantages, depending on
available data, their type and resolution, and the aim of
the study. Here, we perform a hazard zonation based on
the physical model STONE for the simulation of rockfalls,
at 10 m resolution consistently all over Italy, and aggre-
gating results at the slope unit level. The novelties, here,
are: (i) the introduction of a seismic trigger for rockfalls,
which adds a temporal component to an intrinsically static
model and allows to obtain an estimate of seismically in-
duced rockfall hazard, (ii) high–resolution application of
the model at national scale, and (iii) implementation of
the results in a WebGIS. Peak ground acceleration maps
with different return times including seismic amplification
represent the earthquake trigger. A data–driven map of
possible rockfall sources all over Italy, mapped by experts
in sample representative locations, allowed statistical gen-
eralization to unsurveyed areas, at national scale. Eventu-
ally, application of a simple linear transformation, to map
values of peak ground acceleration into activation prob-
ability of sources, links “static” rockfall simulations with
“dynamic”, time–dependent triggering. Results are maps
of rockfall susceptibility with different return times, i.e.,
a step forward to the full assessment of rockfall hazard.
Maps of hazard values and corresponding uncertainties,
aggregated at slope unit level and categorized, are readily
available for download, and for visualization in the new
WebGIS. The new model for seismic triggering of rockfalls
can be applied at the local and regional scale, calibrated
with specific earthquake events instead of the return time
scenarios considered here. On the temporal scale, this ap-
proachis suited for application in near–real time.
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Highlights

• We perform physical rockfall simulations at 10 m res-
olution all over Italy

• A novel seismic trigger mechanism adds a dynamic
component to the static model

• Seismic shake maps for different return times help cal-
ibrating a dynamic trigger

• Susceptibility maps for different return times are a
new step towards rockfall hazard

Contents

1 Introduction 2

2 Background 2

3 Materials 3
3.1 Data . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Software . . . . . . . . . . . . . . . . . . . . 4
3.3 Study area . . . . . . . . . . . . . . . . . . . 5

4 Methods 7
4.1 Optimized slope unit delineation . . . . . . 7
4.2 Simulation of rockfall trajectories with

STONE . . . . . . . . . . . . . . . . . . . . 7
4.3 Scenarios for peak ground acceleration . . . 9
4.4 Seismic triggering of rockfall sources . . . . 10

5 Results 11

6 Discussion 15

7 Conclusions 18

8 Data availability 21

9 Acknowledgments 21

1

https://doi.org/10.1016/j.geomorph.2023.108652


1 Introduction

Co-seismic landslides are long recognized as one of the
most prominent ground effects of earthquakes, besides de-
formations, liquefaction, and surface faulting, resulting
from ground shaking due to the propagation of seismic
waves (Keefer, 2002). Waves propagate in all directions
from the epicenter of the earthquake and ground effects
can occur at considerable distance from the initial surface
rupture (Dai et al., 2011; Pokharel et al., 2021). As-
sessment of the distribution of landslides caused by a spe-
cific earthquake, their number, size and runout distance is
key to infer the secondary hazard posed by landslides trig-
gered by an earthquake (Harp et al., 2011; Fan et al.,
2019).

As most earthquake–induced landslides in Italy are rock-
falls (Martino et al., 2014; Caprari et al., 2018;
Romeo et al., 2017), in this work we adopted a spe-
cific physically based model to describe this kind of land-
slides. A rockfall is a rock block detached from a cliff
by sliding, toppling or falling, and subsequently falling
independently. It falls along a vertical or sub–vertical
slope by bouncing and flying along ballistic trajectories,
or by rolling on talus. The block motion comes to an
end when it has lost all of its energy during impacts or
by friction. Here, we describe rockfall trajectories using a
simple three–dimensional program called STONE, devel-
oped two decades ago by Guzzetti et al. (2002). The
model is typically used for rockfall susceptibility or risk as-
sessment on specific sites/infrastructure (Guzzetti et al.,
2003, 2004; Santangelo et al., 2019; Alvioli et al.,
2021).

The main novelty introduced in this work is a mechanism
to combine information from static, time— and trigger-
–independent potential rockfall sources, with scenarios for
peak ground acceleration (PGA) due to seismic shaking in-
cluding ground motion modifications induced by sub–soil
site condition. This allows obtaining probabilistic maps
of seismically–induced rockfall sources, linked to a given
return time, corresponding to the return time associated
with the selected PGA scenarios. Thus, the link between
a seismic trigger with given return time effectively adds a
temporal component to the static model.

The method, in turn, assumes knowledge of pre–existing
conditions for the possible detachment of a block, which we
establish in a probabilistic way based on sole morphomet-
ric considerations (Alvioli et al., 2021). The process of
detachment of blocks due to ground shaking is a complex
one (Huang et al., 2011), and the method presented
here is the simplest yet effective way we could devise to
link ground shaking and rockfall triggering. Simulations
of rockfall trajectories initiated from the triggering loca-
tions result in maps representing the spatial likelihood of
rockfall occurrence.

On the other hand, the model does not explicitly provide a
quantitative measure of the magnitude of expected events;

each simulated trajectory does not embed information on
the size, or destructive power, of the falling block. Thus,
considering spatial distribution of PGA values correspond-
ing to earthquake events with given return times, we even-
tually obtain an overall assessment for seismically–induced
landslide hazard at national scale, in Italy, excluding the
magnitude of such events.

Results of this work are aggregated at slope unit level.
Examples of landslide studies based on the same national
slope unit map exist in the literature. They discussed a
conceptual debris flow model (Marchesini et al., 2020),
rockfall susceptibility using STONE but no specific trigger
(Alvioli et al., 2021), artificial neural networks (Am-
ato et al., 2021) and a statistical model for landslide
susceptibility for different landslide types in Italy (Loche
et al., 2022a).

This work is organized as follows. Section 2 provide mo-
tivations and a brief review of literature relevant to co–
seismic landslide hazard, and rockfall hazard. Section 3
lists and briefly describes the data used here, in Section
3.1, the software used for the completion of this work, in
Section 3.2, and the details of the study area, in Sec-
tion 3.3. Section 4 describes the basics of the approach
adopted here, and it is organized in subsections corre-
sponding to the different steps of our approach. Section
5 illustrates the results obtained for earthquake–induced
rockfall hazard, while Section 6 contains a critical dis-
cussion of the results and Section 7 lists the conclusions
that can be drawn. The maps obtained in this work are
available for download and visualization in a WebGIS, as
described in Section 8.

2 Background

Post–seismic landslides may occur well after the event and
considerable effort has been devoted to the study of their
residual hazard (Yamaguchi and Kasai, 2022; Loche
et al., 2022b). Landsliding frequency increases after a
large earthquake, and the effect may persist for years, or
decades (Marc et al., 2015; Massey et al., 2022).
Complete landslide hazard assessment requires the joint
knowledge of the spatial likelihood of occurrence (suscep-
tibility), of its magnitude, and of its temporal depen-
dence (Nadim, 2013; Alvioli et al., 2018). Specif-
ically, rockfalls are among the most prominent types of
landslides caused by earthquakes, with examples in many
earthquake– and rockfall–prone areas of the world (Wick
et al., 2010; Massey et al., 2014), also from events in
the past (Owen et al., 2008; Fernández et al., 2021).
One limitation in explicitly dealing with rockfalls is that
landslide inventories often do not distinguish the different
types of landslides.

The literature contains a vast body of work about
earthquake–induced landslide susceptibility. Recent stud-
ies feature statistical methods with a variable selection
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of spatial predictors, and a few predictors associated to
specific earthquake events. The latter may be intended
as dynamic predictors, to mimic temporal dependence of
the action of seismic shaking on pre–existing, static terrain
conditions (Nowicki Jessee et al., 2018; Tanyaş et al.,
2019a; Valagussa et al., 2019). Dynamic predictors
represent quantitative measures of earthquake intensity;
examples are peak ground acceleration, peak ground ve-
locity, or modified Mercalli intensity. Variations of such
methods were devised to incorporate the magnitude of
landslide distribution (Tanyaş et al., 2019b).

Nevertheless, a truly time–dependent approach requires
considerable additional information, to account for differ-
ent possible events with different characteristics of ground
shaking scenarios. This can be accomplished by stochas-
tic simulations based on sophisticated statistical analysis
(Lombardo and Tanyaş, 2021). A totally different ap-
proach – adopted in this work – stems from the use of
physically based models for the description of landslide oc-
currence. Most physically based models embed both spa-
tial and time dependence and, in principle, they may be a
good fit for the assessment of landslide hazard, provided
a sound mechanism to link seismic shaking and landslide
triggering can be devised.

One existing method to describe co–seismic slope behavior
is the rigid–block method of Newmark (see Wang et al.
(2016) for the case of the Wenchuan earthquake, and ref-
erences therein), which considers the friction of blocks slid-
ing on an inclined plane when subject to accelerations due
to ground shaking. The method is typically used to es-
timate displacements of different locations hit by earth-
quakes, and displacements rates may be related to the
rate of occurrence of landslides/rockfalls, provided suffi-
cient data is available for calibration. We did not consider
this approach, here.

The model STONE, adopted here to describe rockfalls tra-
jectories, does not contain a temporal component, nor does
it implement seismic shaking as an input for the initiation
of rockfalls. It just calculates geometric trajectories for
given starting points, or sources. Thus, to use the model in
combination with ground motion scenarios, one solution is
to prepare different input source maps for different earth-
quake scenarios. This also allows including the effect of
stratigraphic amplification (Assimaki et al., 2005); we
did not include topographic amplification, instead (Pig-
nalosa et al., 2022). Examples exist of accurate analysis
of predisposing factors to investigate the likelihood of rock
faces to be destabilized by ground shaking (Huang et al.,
2011; Mavrouli et al., 2009).

To the best of our knowledge, all of the existing mod-
els comparable with STONE (RockGIS, (Matas et al.,
2017); Rockyfor3D, (Dorren et al., 2022) and refer-
ences therein; 2D CRSP, (Jones et al., 2000) require
very similar input, and embed no triggering mechanism.
In the case of CRSP, recently Kanari et al. (2019) inves-

tigated the relationship between the blocks’ initial velocity
and PGA values, and concluded that the initial velocities
are almost irrelevant, as far as the blocks’ travel distance
is concerned. The same holds true for STONE (which we
checked), in which initial velocity can be configured; this
is the main reason why we devised a different way to relate
PGA and triggering probability.

An example of rockfall hazard calculated using a three–
dimensional model, branched from STONE and called Hy–
STONE (Agliardi and Crosta, 2003), was applied in
Italy for the Friuli Earthquake of 1976 (Valagussa et al.,
2014). In that case, the authors included magnitude es-
timated from frequency—size relationship of rockfalls in
the study area, and used seismic–hazard scenarios with
different annual frequencies of occurrence. The probabil-
ity of rockfall triggering was obtained with a discriminant
function analysis using slope and PGA as input variables.
The model applied here is simpler than the referenced one
– but it has the advantage of using amplified PGA i.e.,
PGA at flat outcropping intact rock modified by the local
site conditions), and of being applicable to an area as large
as the whole of Italy, with the potential of being further
developed in a near–real time approach.

3 Materials

Here we describe materials used to generate PGA maps, to
perform simulations of rockfall trajectories, and to aggre-
gate and visualize results – separately for data and soft-
ware.

3.1 Data

The PGA maps used in this work, developed by Falcone
et al. (2021) and Mendicelli et al. (2022), exploited a
large database of seismic microzonation data published by
the Italian Civil Protection Department (Benigni et al.,
2018) and from the Italian Institute of Geophysics and
Volcanology (INGV). The data included:

• A set of about 40,000 continuous boreholes, useful to
define lithological successions existing in Italy.

• About 1,200 down–hole seismic tests and 3,000 mul-
tichannel analysis of surface waves, which were asso-
ciated with soil covers (i.e., clay, sand, and gravel)
and geological bedrock recognized from about 4,200
borehole logs. The data allowed extraction of pro-
files for the shear wave velocity, VS , and the aver-
age shear wave velocity of the upper 30 m, VS30, for
each lithotype of interest (Mori et al., 2020). For
the same purpose, additional data were retrieved from
literature, such as the decay of secant shear modulus
according to the shear strain increase (see Falcone
et al. (2021), and references therein).

• Acceleration response spectra in Italy, obtained from
the reference seismic hazard corresponding to 475 y
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INPUT DATA
(a) 10 m DEM, topographic areas

(b) Lithological map 1:100,000

(c) 2,644 sample sources map

(d) 300,000 slope units polygons

STATISTICAL GENERALIZATION
Morphometric analysis of mapped sources

Statistical generalization

Production of <static= source grid Pstatic(S)

ROCKFALL MODELING - STONE
Code run, aggregation within slope units

H

H ROCKFALL SUSCEPTIBILITY MAPS

PEAK GROUND ACCELERATION SCENARIOS
Collection of maps for flat bedrock from INGV database

Pre-processing: extensive site data – NC92Soil

Post-processing: seismic response – NC92Soil

(e) Production of probabilistic return time scenarios

DATA-

PARALLEL 

PROCESSING

CALIBRATION OF <DYNAMIC= SOURCES
Extension of Pstatic(S) to the whole of Italy

(f) Analysis and mapping of PGA values into [0,1]

Production of <dynamic= source maps Ptrigger(S,PGA)

ROCKFALL MODELING - STONE
Code run, aggregation within slope units

H

H

DATA-PARALLEL 

PROCESSING

ROCKFALL HAZARD MAPS

A

(e)

(g) WebGIS IMPLEMENTATION

Figure 1: A diagram representing the overall framework
for the production of rockfall hazard maps. The upper
part of the diagram (maps and boxes in blueish colors)
describes the ingredients needed to perform this study,
obtained from previously published work; the lower part
(maps and greenish colors) shows the activities specifically
developed and implemented for this work, as far as rock-
fall modeling is concerned. See Fig. 2 for a larger version
of the thumbnails in (a) and (b).

and 975 y return periods (Meletti and Montaldo,
2007; Montaldo and Meletti, 2007). These are
two of the nine return times available from the INGV
website.

Section 4 describes how the data above were useful to
obtain PGA maps for the two return periods, 475 y and
975 y, considered in this work.

Data used to perform rockfall simulations with STONE
are as follows. Inputs of the code are a digital elevation
model (DEM), a map of rockfall sources at the same reso-
lution of the DEM, and maps containing numerical values
of parameters used in the code. The method presented is
this paper builds on the application described by Alvi-
oli et al. (2021). In the cited work, the model STONE
was still applied at national level, but limited to a buffer

around the railway network (about 24,000 km2), and re-
gardless of any particular trigger.

Here, we applied the same code for rockfall trajectory
simulation on all of Italy, instead (about 240,000 km2);
we also extended the same method for the probabilistic
localization of potential rockfall sources, subject to the
further constraint of selective activation on the basis of
different PGA values. Thus, in addition to the PGA
maps corresponding to different return time scenarios, we
used the same input data as in Alvioli et al. (2021),
namely:

• A DEM with national coverage, with 10 m grid size,
named TINITALY (Tarquini et al., 2007) (shown
in Fig. 1(a) and Fig. 2(a), along with a map of
subdivision in physiographic units of Italy (Guzzetti
and Reichenbach, 1994)).;

• A lithological map of Italy, scale 1:100,000, con-
taining 19 lithological classes and developed specifi-
cally for the purpose of aiding physically–based slope
stability assessment (Fongo, 2018; Bucci et al.,
2022). Each lithological unit in the map was asso-
ciated to specific range of input parameters of the
code STONE, namely friction (dynamic parameter,
relevant to the rolling state of masses, in STONE)
and normal and tangential restitution (relevant for
the bouncing impacts on the ground). Numerical val-
ues are listed in Table 1; a map is in Fig. 1(b) and
Fig. 2(b).

• A map of sample potential source area for rockfalls
in Italy, from expert interpretation of Google Earth™

images. A detailed description of the mapping crite-
ria and of the relevance of such map for building a
probabilistic model of rockfall sources, of course, is in
Alvioli et al. (2021) and will be briefly summarized
in Section 4.4; a sample Google™ image with a small
sample of expert–mapped polygons is in Fig. 1(c).

• A national slope unit map (Alvioli et al., 2020),
containing more than 300,000 slope unit polygons, of
variable shape and size, generated with the software
r.slopeunits (Alvioli et al., 2016). Slope units ex-
clude plains and cover 224,000 km2, out of the the
total area of Italy, about 300,000 km2; a thumbnail
image showing overall coverage of slope units is in
Fig. 1(d).

• An inventory of seismically–induced landslides, col-
lected by the Centro di Ricerca per i Rischi Geo-

logici (CERI), and called Catalogo degli Effetti Defor-

mativi al suolo Indotti da forti Terremoti in Italia”
(CEDIT), consisting of 2,058 landslide points and
used for partial validation in this work.

3.2 Software

Most of the GIS analyses described in this work were per-
formed in GRASS GIS running in a Linux OS, with ex-

4



Figure 2: The physiographical, topographical, lithological settings of Italy and relationships with seismic hazard and
seismic ground effects. (a) Subdivision in physiographic areas (originally defined by Guzzetti and Reichenbach
(1994) and further modified by Alvioli et al. (2021)), consisting of eight main provinces and further split in a total
of 29 sections (cf. Table 2); the underlying topography elevation is also shown. (b) Lithological map recently obtained
by Bucci et al. (2022), at the scale 1:100,000, containing 19 classes (cf. Table 1). (c) Seismic hazard levels in Italy,
represented by maximum ground acceleration with exceeding probability of 10% in 50 years (Stucchi et al., 2004);
full black dots are seismic–induced rockfalls (1100), while blue circles are any other type of landslides (1606, of which
475 of unknown type; from CEDIT database (Martino et al., 2014; Caprari et al., 2018)).

tensive use of bash scripting and parallel computing. The
national slope unit map was obtained previously using the
r.slopeunits module, by Alvioli et al. (2016); the opti-
mization procedure and scripts were updated as inAlvioli
et al. (2020); Pokharel et al. (2021). The maps of ex-
pected peak ground acceleration were obtained using the
NC92Soil software (Falcone et al., 2021). Simulations
of rockfall trajectories were obtained using the software
STONE (Guzzetti et al., 2002), parallelized in a data–
distributed framework using scripts originally developed
by Alvioli et al. (2021). Visualization in a WebGIS re-
quired the software G3W–SUITE, a modular client–server
application based on QGIS–Server for the publication of
interactive cartographic projects, compatible with QGIS
3.16 LTR.

3.3 Study area

The area studied in this work is the boot–shaped Ital-
ian peninsula, consisting of about 300,000 km2, located in
southern Europe. Italy has two main mountain ranges;
the Apennines, crossing the peninsula roughly from North
to south, and the Alps, of which Italy contains the south-
ern parts. The largest plain is the Po Valley and the two
major island are Sicily and Sardinia. The physiographic
setting of Italy was nicely summarized by the classifica-
tion of Guzzetti and Reichenbach (1994), who dis-
tinguished eight main physiographic provinces (cf. Fig.
2), namely: 1., Alpine Mountain System; 2., North Italian
Plain; 3., Alpine–Apennines Transition Zone; 4., Apennine
Mountain System; 5., Tyrrhenian Borderland; 6., Adri-

atic Borderland; 7., Sicily; 8., Sardinia. They are further
split in a total of 29 (originally 30) sub–units (sections),
describing the general topographic and geomorphological
diversity of Italy. The boundaries between provinces are
easily traced and correspond to major morphological, geo-
logical and coastline features, while the borders of sections
are distinct and generally more open to interpretation
(Guzzetti and Reichenbach, 1994). More recently,
the physiographic sections were considered for further clas-
sifying Italy into topographic–morphologic clusters using
hydrological basins as the basic classification unit; the in-
terested reader is referred to Alvioli et al. (2020) for
further details and results. Figure 2(a) shows a full–size
version of the thumbnail of physiographic zones in Fig.
1(a), overlaid to a shaded relief map. The physiographic
zones correspond with the ones listed in Table 1.

Italy contains a large variety of geological features, ap-
proximately corresponding with the physiographic clas-
sification given above. The country is in active geody-
namic evolution, resulting in volcanoes, earthquakes, and
widespread land and coasts instability. Geology in the
area is controlled by the progressive approaching of two
megaplates, Eurasia to the north and Africa to the south.
The geology of Italy is remarkably varied and contains
rock series from all eras and periods (Bosellini, 2017).
The Alps chain are a thrust belt with a double vergence,
resulting from the collision of the European and African
continental margins between the Middle Cretaceous and
the Late Eocene. The Po Plain is an alluvial region, re-
sulting from marine (older) and fluvial (more recent) sed-
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Table 1: Numerical values of the parameters used in STONE. “Class ID” and “Lithological Class” refer to the 19
classes identified in the geo–mechanical map of Bucci et al. (2022). The parameter values shown here were used
before in STONE by Alvioli et al. (2021); the program performs random sampling of values of the parameters in a
range around the nominal values, which we set to ± 10%.

Class ID
Lithological Dynamic Normal Tangential

Class Friction Restitution Restitution

L1 Anthropic deposits 0.65 35 55

L2 Alluvial, lacustrine, marine, eluvial, colluvial dep 0.80 15 40

L3 Coastal deposits, not related to fluvial processes 0.65 35 55

L4 Landslides 0.65 35 55

L5 Glacial deposits 0.65 35 55

L6 Loosely packed clastic deposits 0.35 45 55

L7 Consolidated clastic deposits 0.40 55 65

L8 Marls 0.40 55 65

L9 Carbonates-siliciclastic and marl sequence 0.35 60 70

L10 Chaotic rocks, mélange 0.35 45 55

L11 Flysch 0.40 55 65

L12 Carbonate Rocks 0.30 65 75

L13 Evaporites 0.35 45 55

L14 Pyroclastic rocks and ignimbrites 0.40 55 65

L15 Lava and basalts 0.30 65 75

L16 Intrusive igneous rocks 0.30 65 75

L17 Schists 0.35 60 70

L18 Non–schists 0.30 65 75

L19 Lakes, glaciers 0.95 10 10

imentation, between the the Southern Alps and Northern
Apennines. The Apennines are the result of the collision of
the western continental margin of the African Promontory
with the Sardinia-–Corsica block, which happened mainly
during Miocene-–Pliocene time, and consists of a series
of east–verging areas. The Apennine chain can be sub-
divided into Northern Apennines and Central–Southern
Apennines, bounded by regional transcurrent faults. Most
of Sicily belongs to the northern continental margin of
Africa, while Sardinia (with Corsica, France) is a frag-
ment of the European continent. Additional details on
the geology of Italy can be found in Bosellini (2017),
and references therein. A full geo–lithological map at
1:100,000 scale, the highest geographical scale for which
a digital map is available for the whole of Italy, was re-
cently obtained by Bucci et al. (2022) specifically for
geo–mechanical modeling (used here). Figure 2(b) shows
a full–size version of the thumbnail of the geo–lithological
map in Fig. 1(b); the lithological classes correspond with
the ones listed in Table 1.

The remarkable extension of Italy in latitude result in di-
verse climatic conditions. The orography of the Apennines
and the Alps substantially influence weather fronts, winds,
and temperature distribution, exposing different areas of
Italy to specific types of circulation (Fratianni and Ac-
quaotta, 2017; Mazzoglio et al., 2021). The Alps
have a barrier effect from the cold currents from the North,
while the Apennines limit the influence of moist air to the
Tyrrhenian side along the entire peninsula, and protect

from the cold easterly winds that hit the Adriatic side
during winter. The Mediterranean Sea has a mitigating
effect on climate; the distribution of atmospheric pressure
over the Peninsula and over the surrounding seas is one of
the fundamental factors which affects the meteorological
regimes. Due to these factors, the main climatic regions
according to the Köppen classification falls entirely within
the Mediterranean climate area, which belongs to a sub-
tropical climate type with dry summers, with areas be-
longing to other meso–thermal climates and situations of
micro–thermal or altitude climates. A full summary of cli-
matic classification based on the Köppen-–Geiger scheme,
temperature and precipitation distribution in Italy is in
Fratianni and Acquaotta (2017). They also argue that
onset of climatic changes shows gradual increase in tem-
perature and a change in the annual distribution of pre-
cipitation throughout the country (Fratianni and Ac-
quaotta, 2017). Projected climatic changes are expected
to have an effect on slope stability, in terms of frequency
and magnitude of landslide phenomena (see e.g., Alvioli
et al. (2018) and references therein).

The geology of Italy determines a substantial seismic haz-
ard in many areas of the country. The INGV publishes
seismic hazard maps, i.e., maps of the expected seis-
mic shaking due to an earthquake. Figure 2(c) shows
a map of the expected maximum ground acceleration
with exceeding probability of 10% in 50 years (Stucchi
et al., 2004), in units of the acceleration of gravity,
g. Largest values (larger than 0.225 g) are expected in
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Calabria, South–Eastern Sicily, Friuli–Venezia Giulia and
throughout the Central–Southern Apennines. The figure
also shows a point inventory of earthquake–induced land-
slides, known as CEDIT (Martino et al., 2014; Caprari
et al., 2018). It contains a total of 2,058 points, classified
as 16 different types of landslides. The vast majority are
rockfalls (1,093), though 459 points are unclassified.

4 Methods

This section describes the framework adopted to ob-
tain maps of seismically–induced rockfall hazard in Italy.
These include: (i) a specific choice of mapping units, for
the analysis of mapped rockfall sources and to aggregate
results; (ii) a numerical model to simulate in three di-
mensions the trajectories of falling blocks; (iii) maps de-
scribing the expected seismic shaking with two different
return times; (iv) a novel mechanism for localizing initi-
ation points of trajectories, linking the seismic trigger to
predisposing factors defined by local topography and dif-
ferent physiographic settings in Italy. The overall frame-
work adopted in this work is summarized graphically in
Fig. 1. We described each of these topics in separate
sections, as follows.

4.1 Optimized slope unit delineation

Slope units are mapping units well suited for landslide
studies, both with statistical (Tanyaş et al., 2019b;
Pokharel et al., 2021) and with physically based ap-
proaches (Doménech et al., 2020; Alvioli et al., 2021;
López-Vinielles et al., 2021; Marchesini et al.,
2021; Alvioli et al., 2022a). They are polygons de-
limited by drainage and divide lines obtained solely from
a specific DEM. The advantage of using slope units instead
of the standard grid cells is their correspondence with the
real landscape; a slope unit is a representation of a hill
slope on a digital landscape. As such, one can assume
with reasonable confidence that the likelihood of landslide
occurrence within a given slope unit polygon is uniform.
This gives a second, important advantage: inaccuracies or
mismatches of input data for a specific model are miti-
gated by aggregation at slope unit level (Jacobs et al.,
2020).

Drainage and divide lines for a specific DEM are not univo-
cally determined. This is due to different existing meth-
ods and software to perform such delineation and, most
importantly, to the required level of detail. That results
in slope units of different sizes, due not only to differences
in local terrain roughness but also to the choice of a scale
for the analysis. This, in turn, is reflected in different
parameters controlling the size of slope unit in dedicated
software.

In this work, we adopted slope units obtained from the
software r.slopeunits (Alvioli et al., 2016). Parame-
ters controlling the scale of slope units delineation, in the

software, were optimized at the national level by Alvioli
et al. (2020). Optimization was performed using only
morphometric considerations, by maximizing the capacity
of the polygonal map of segmenting a DEM with 25 m grid
size1 into mapping units with well–defined slope aspect.
Details of the delineation and optimization procedure are
given in the cited bibliography, for the interested reader; a
thumbnail image showing the portion of Italy covered by
the 300,000 slope unit polygons is in Fig. 1(d).

4.2 Simulation of rockfall trajectories

with STONE

The numerical model used in this work, STONE, describes
trajectories of falling blocks from their detachment point
to their rest point downhill. In the model, a rockfall tra-
jectory is a combination of three possible processes: free
falling, bouncing and rolling. Each of them is controlled
by mechanical laws described by simple equations, in the
computer program. The code, however, does not contain
a mechanism for the actual detachment of blocks. This is
due to the limitation posed by the amount of knowledge
required to model the detachment process: data about the
conditions of the rocks, their fracturing pattern, weather-
ing state, and others (Mavrouli and Corominas, 2020;
Hendrickx et al., 2022; Núñez-Andrés et al., 2023).
In addition, a specific description of the mechanism, like
sliding, toppling or falling, would be required to link those
conditions and local morphology of the rocks to an actual
probability of detachment.

In this work, we deal with seismically–induced rockfalls.
We devised a probabilistic procedure to define the loca-
tions of possible detachment points as a function of slope,
and a selective triggering of the possible sources driven
by seismic ground shaking. This allows producing a map
of rockfall source locations (one of the main inputs of
STONE) as a function of ground shaking scenarios and
of local topography. Details of this process are in Section
4.4, and are original of this work.

The calculation of trajectories themselves, instead, is com-
pletely delegated to runs of the numerical code, initialized
with a DEM map, the map of sources, and maps of lo-
cal values of numerical coefficients controlling the different
processes involved in the calculations. The latter consisted
in three different coefficients: friction, controlling the be-
havior of blocks during rolling, and normal and tangen-
tial restitution, controlling energy loss during bouncing
impacts on the ground. Table 1 shows numerical val-
ues of the coefficients, for different lithological classes at
1:100,000 scale (Bucci et al., 2022), adopted both in
Alvioli et al. (2021) and here.

The model STONE describes falling blocks as point–like,

1The resolution of the DEM used to prepare slope units, 25 m,
is smaller than the resolution of the DEM used here for simulations;
this does not affect results in any way, as slope units are only used
to aggregate final results.
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Table 2: The different physiographic provinces (rows in bold) and sections of Guzzetti and Reichenbach (1994),
modified as in Alvioli et al. (2021). The table shows the parameters a and b appearing in Eq. (3) and controlling
the probability of having static rockfall sources Pstatic(S) as a function of slope, S. The areal extent of each
topographic unit, its percent surface and area covered by slope units (SU) are also listed. See Fig. 2 for map of the
geographical distribution of the physiographic provinces and sections.

Province/Section a b
Extent

Percent
SU Area

[km2] [km2]

1.: Alpine Mountain System – – 52,010 17.4 51,739

1.1: Western Alps 0.11 5.54 16,274 5.4 16,547

1.2 & 1.3: Central-Eastern Alps & Carso 0.13 4.32 35,735 11.9 35,191

2.: North Italian Plain – – 46,531 15.54 4,580

2.1: Po Plain 0.21 6.86 32,702 10.9 1,694

2.2: Veneto Plain 0.11 13.00 9,426 3.2 550

2.3a: North-Western Alpine Foothills 0.11 8.59 3,103 1.0 1,950

2.3b: South-Western Alpine Foothills 0.31 4.30 1,298 0.4 359

3.: Alpine–Apennines Transition Zone – – 6,313 2.1 6,117

3.1: Monferrato Hills 0.11 2.92 2,322 0.8 1,918

3.2: Ligurian Upland 0.11 5.71 3,991 1.3 4,199

4.: Apennine Mountain System – – 80,947 27.0 82,179

4.1: Northern Apennines 0.11 6.78 22,393 7.5 23,886

4.2: Central Apennines 0.11 6.41 16,835 5.6 17,386

4.3: Molise Apennines 0.11 9.70 4,920 1.6 5,136

4.4: Molise-Lucanian Hills 0.11 9.64 8,097 2.7 8,345

4.5: Lucanian Apennines 0.15 7.06 12,890 4.3 12,651

4.6: Sila 0.11 8.31 6,203 2.1 5,638

4.7: Aspromonte 0.11 5.98 5,337 1.8 4,959

4.8: Sicilian Apennines 0.11 6.39 4,262 1.4 4,176

5.: Tyrrhenian Borderland – – 37,857 12.64 29,404

5.1: Central Italian Hills 0.11 8.32 25,346 8.5 20,022

5.2: Tosco-Laziale Section 0.17 2.92 6,136 2.0 5,181

5.3: Lazio-Campanian Section 0.11 7.43 6,375 2.1 4,201

6.: Adriatic Borderland – – 31,062 10.35 17,521

6.1: Central Apennine Slope 0.11 5.41 9,023 3.0 8,230

6.2: Murge-Apulia Lowland 0.11 36.77 20,236 6.8 7,923

6.3: Gargano Upland 0.11 3.00 1,731 0.6 1,368

7.: Sicily – – 21,105 7.1 18,867

7.1 & 7.2: Marsala Lowland & Sicilian Hills 0.11 14.72 14,285 4.8 13,273

7.3: Iblei Plateau 0.11 11.81 5,321 1.8 4,178

7.4: Etna 0.17 19.10 1,499 0.5 1,416

8.: Sardinia – – 23,790 7.9 19,320

8.1: Sardinian Hills 0.11 19.57 16,404 5.5 14,548

8.2: Gennargentu Highland 0.11 6.50 2,580 0.9 2,209

8.3: Campidano Plain 0.11 23.22 1,946 0.6 190

8.4: Iglesiente Hills 0.11 23.20 2,844 0.9 2,375

and neglects air drag, as their velocity is usually not large
enough to make it relevant. The code considers each grid
cell selected as a rockfall source and calculates the trajec-
tory followed by the block until it comes to a rest. The
trajectory depends on the topography and on the coeffi-

cients controlling the loss of velocity during bouncing and
rolling. The topography is described using a terrain regu-
lar network of triangles, built on the equally spaced eleva-
tion points of the input DEM. The simulation is not fully
dynamical, in that the code does not consider the shape
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and mass of blocks; this makes the simulation fast, and
we can simulate hundreds of different trajectories for each
source cell. In fact the code contains a certain degree of
randomization involving the detachment angle and terrain
coefficients, which makes trajectories simulated from the
same source point slightly different from each other. The
degree of variability is selected by the user, and it usually
ranges between ±5% and ±10% around central values in
Table 2, for the coefficients, and around the horizontal
direction, for the angle of detachment.

In the code, the possibility for the blocks to break apart
into smaller fragments (Matas et al., 2017; Núñez-
Andrés et al., 2022) is not accounted for. An assessment
of the effects of these approximation is beyond the scope of
this work, and will be addressed elsewhere. Nevertheless,
we believe that in the present context of a national–scale
application of the code, the approximations are largely
justified – mostly because the major role, here, is played
by the triggering mechanism of rockfalls.

Output of the computer program is rockfall count, a raster
map whose values represent the number of intersections
of rockfall trajectories with the local topography, in each
grid cell. The output assumes a probabilistic meaning,
because (i) the code contains random variations of input
parameters drawn from probability distributions at each
simulation, and (ii) from each source location it simulates
many possible trajectories, which are all different in virtue
of the randomicity in the code. Thus, the count in one
particular location represents the relative probability of
that particular grid cell of being hit, for given sources and
conditions set by the user.

4.3 Scenarios for peak ground accelera-

tion

We adopted PGA maps obtained as in Falcone et al.
(2021) and Mendicelli et al. (2022), for two different
return times, which we considered as different rockfall–
triggering scenarios. Previous works obtained the ratio
between expected ground motion at the site of interest
and that at the outcropping engineering bedrock, known
as amplification factor (AF). The morpho-geological clus-
ters proposed by Iwahashi et al. (2018) were adopted to
generate specific AF–VS30 correlations. In fact, morpho–
geological properties (i.e., normalized slope, local convex-
ity, and surface texture) provide useful criteria to recognize
homogeneous area for dynamic purposes (Mori et al.,
2020; Falcone et al., 2021). The polygons were useful
to group the 11,300 VS30 values and the subsoil lithologies
groups of the 35,000 borehole data logs. Additional input
data for the purpose are listed in Section 3.1.

Seismic site response analyses were performed using the
NC92Soil code (Falcone et al., 2021), based on the
equivalent linear approach in the frequency domain. The
same code was adopted for the pre–processing of site data
and post–processing of seismic site response analyses. The

software NC92Soil is a stand–alone Windows application
written in Python. At its core is the well–known code
Strata (pystrata) for the analysis of local seismic response
(Kottke et al., 2013). NC92Soil works with a graphi-
cal user interface, to run multiple parametric analyses for
professional and research activities. Inputs of the software
are underground profiles, time series and response spectra;
it performs equivalent linear site response analysis in the
frequency domain, using time domain input motions or
random vibration theory methods, and can perform both
deterministic and stochastic analysis of the site proper-
ties.

PGA maps at the level of outcropping flat bedrock,
PGArock, were retrieved from the seismic hazard study
provided by the INGV (Meletti and Montaldo, 2007;
Montaldo and Meletti, 2007) considering the median
values. Out of the nine return times available from INGV,
we selected 475 y for this is the typical return time consid-
ered in Italy to assess effects on residential buildings, used
in seismic microzonation studies. We also selected 975 y to
illustrate the possibility of including different return times
in the newly proposed framework.

Recurrent site conditions were defined according to seis-
mic microzonation studies (Benigni et al., 2018). Us-
ing such data, Falcone et al. (2021) performed a set
of about 30 million numerical simulations of local seismic
site response, adopting an equivalent linear approach in
the frequency domain. A total of 378 AF–VS30 relations
were obtained, using the following expression:

ln (AF ) = a [ln (VS30)]
2
+ b ln (VS30) + c , (1)

where the parameters a, b, and c depend on the intensity
of the input ground motion, the geomorphological cluster,
and percentile of interest (16th, 50th, and 84th). Maps of

Figure 3: The AF–VS30 correlation, Eq. (1), correspond-
ing to the 50th percentile. PGArock is the reference ground
motion at the ideal flat outcropping rock. The correla-
tion is illustrated for one of the 42 considered morpho–
geological clusters.
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Figure 4: The PGA maps corresponding to 475 y return time (a) and to 975 y return time (b) scenarios, in units of
g – the acceleration of gravity. In both cases, the figures show values of PGA corresponding to the 50th percentile of
the procedure described in Section 4.3. In this work, we also used values corresponding to the percentiles 16th and
84th (not shown here) to calculate uncertainty on the final rockfall hazard maps, for both return times.

amplification factors were aligned to a 50 m x 50 m grid
consistent with the VS30 map by Mori et al. (2020).
Figure 3 shows an example of AF–VS30 correlation, cor-
responding to one of the 42 morpho–geological clusters.
The AF–VS30 relation is non–linear, it depends on VS30

and on PGArock, i.e, the reference ground motion at the
ideal flat outcropping rock which depends on the site of
interest and on the considered return period.

It is worth noting that PGArock is provided by INGV for
a 5 km x 5 km grid; hence, PGArock for a 50 m x 50 m
grid can be obtained by interpolating INGV data. Hence,
the amplified ground shaking was obtained as the product
of the PGArock and the AF maps. For sake of brevity,
the amplified PGA is herein named PGAp

RT
where p is the

percentile, p ∈ {16, 50, 84}, and the RT is the return time,
RT ∈ {475, 975}. The PGA maps considered here are new
to this work and were calculated for the specific purpose
of inferring rockfall hazard; previous work only illustrated
AF maps, and only for the 475 y return time.

We are aware that slope seismic response (Bouckovalas
and Papadimitriou, 2005; Massey et al., 2017) is
generally more complex than the one–dimensional ground
motion studied by Falcone et al. (2021). Furthermore,
it is difficult to provide AF based on multi–dimensional
schemes and numerical simulation of seismic site response
for the entire Italian territory. Hence, AF considers the

sole sub–soil setting in this study, and improvements to
include AF based on more complex numerical approaches
will be presented elsewhere. Moreover, bearing in mind
that topographic and stratigraphic amplifications (Assi-
maki et al., 2005) are in the range 1.0–1.4 and 1.0–
4.0, respectively, we decided to consider the only ground
shaking modification induced by the geo–lithological con-
dition.

Figure 4 shows PGA maps corresponding to 475 y return
time and 975 y return time scenarios. In both cases, the
figures show values corresponding to the 50th percentile
of the procedure described in this section. In this work,
we also used values corresponding to the percentiles 16th

and 84th to calculate uncertainty on the final rockfall haz-
ard maps, for both return times, as explained in the next
section.

4.4 Seismic triggering of rockfall

sources

The main novelty introduced in this work is a mechanism
to combine information from static, time– and trigger–
independent potential rockfall sources, with scenarios for
peak ground acceleration due to seismic shaking. This
allows devising probabilistic maps of seismically–induced
rockfall sources, linked to a given return time, correspond-
ing to the return time associated with the selected PGA
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scenarios.

The general idea behind the method introduced here is the
intuitive assumption that an earthquake hitting a rockfall–
prone area would trigger a larger number of landslides in
locations experiencing larger values of PGA, relative to
areas with smaller PGA values (Valagussa et al., 2019;
Massey et al., 2014). This idea is implemented, here,
by (i) adopting a static map of potential rockfall sources,
solely obtained from data–driven morphometric considera-
tions, which identifies rockfall–prone areas, and (ii) using a
well–defined function of PGA values to selectively activate
static sources, with probability dictated by the magnitude
of a PGA map. The method can be summarized in a sim-
ple way by defining a triggering probability as a function
of slope angle S and PGA, as follows:

Ptrigger(S, PGA) = Pstatic(S)FRT (PGA) , (2)

where Pstatic(S) denotes the probability of a grid cell of
being a rockfall source as a function of slope (i.e., the
source map developed by Alvioli et al. (2021) and ex-
tended here to the whole of Italy), and FRT (PGA) is an
increasing, monotonic function of PGA values, such that
0 ≤ FRT (PGA) ≤ 1, and RT denotes a specific choice of
return time.

The Pstatic(S) map is defined as follows:

Pstatic(S) =

� 0 S ≤ a ,

b (S/90)
4

S > a ,
(3)

where the parameters a and b were obtained from sam-
ple source areas mapped by expert geomorphologists, as
described in Alvioli et al. (2021).

The procedure makes use a relatively small set of ob-
servation to infer a probability as a function of slope
with a small number of parameters (Eq. (3)). Alvi-
oli et al. (2021) carefully selected representative loca-
tions, and mapped polygons of potential rockfall sources
in an expert way. They took care in surveying the whole
slope unit containing the representative locations. This al-
lowed to estimate the probability of sources as a function
of slope, by taking the ratio of the distribution of slope
values within the mapped polygons to the distribution of
slope values within the whole slope unit. The collection
of such ratios for many slope units allows obtaining the
parameters in (Eq. 3) by quantile regression.

The parameter values were obtained independently for
each of the physiographic units originally defined by
Guzzetti and Reichenbach (1994) and further mod-
ified by Alvioli et al. (2021). The total number of
mapped source polygons to perform the quantile regres-
sion was 2,644 (a small sample is in Fig. 1(c)), and
the calibration procedure was performed separately in 637
slope units. The numerical values of the parameter b in
Eq. (3), for each physiographic unit, are listed in Table
2; the units themselves are shown in Fig. 1(a).

We adopted the simplest possible choice to map PGA val-
ues into the [0,1] interval, namely:

FRT (PGA) =
PGART − PGAmin

PGAmax − PGAmin

. (4)

Calculation of the function in Eq. (4) requires careful
considerations, though. In fact, in this work we are inter-
ested in assessing the effect of two different PGA maps;
both maps are national (except for the Sardinia Island,
which has negligible seismic hazard; cf. Fig. 4), and they
refer to two different return times, providing two differ-
ent scenarios. Thus, triggering of static sources Fstatic(S)
must be consistent across the two PGA maps.

To this end, the values PGAmin and PGAmax in Eq.
(4) must cover the whole range of PGA values in both
maps; again, the simplest choice is to set PGAmin = 0
and PGAmax = 0.81 (in percents of g, the acceleration
of gravity); the first value is actually the minimum of the
PGA475 map, and the second value is actually the max-
imum of the PGA975 map, not surprisingly. Then, Eq.
(4) tells us that F (PGA) is a linear mapping of [0,0.81]
into [0,1]; insertion of such function in Eq. (2) gives
the final map of seismically induced rockfall sources, as
a function of slope and PGA, where the latter is either
from PGA475 or PGA975. The two maps resulting from
Ptrigger(S, PGA475,975) are the main input of the program
STONE for the simulation of rockfall trajectories corre-
sponding to the two seismic shaking scenarios.

Actually, the procedure for the calculation of ground shak-
ing maps described in Section 4.3 is a probabilistic one,
and as such it produces PGA maps for a given probability,
for a given return time RT. For this work we decided to
consider three maps for each RT scenario; one, correspond-
ing to the 50th percentile, PGA50

RT
, which we considered

as the main triggering PGA map; two additional maps,
corresponding to the 16th and 84th percentiles, PGA16

RT

and PGA84

RT
, which we used to calculate the uncertainty

of the central value. In conclusion, we performed three
production runs for each considered return time.

5 Results

Results of simulations with STONE are summarized in
Fig. 5, at national scale, and Figs. 6-8, which show de-
tails in three different areas in North-Eastern, Central, and
Southern Italy, respectively. The four panels in each figure
show results for both the return times considered in this
work, 475 y and 975 y. The left panels show results cor-
responding to simulations with rockfall sources triggered
with the 50th percentile of PGA maps; the right panels
show uncertainties related to each map, calculated using
information (the difference) from simulations with sources
corresponding to the 16th and 84th percentiles. Both re-
sults are aggregated at slope unit level, and classified in
five categories as follows.
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Figure 5: Results of rockfall simulations for input PGA map corresponding to 475 y return time (top row) and to 975
y return time (bottom row). Left: number of trajectories per pixel obtained with the PGA map at 50th percentile,
averaged within individual slope units and classified in five categories. Right: uncertainty on the left result, calculated
as the difference of the results corresponding to the 84th and the 16th percentiles in each slope unit; the difference was
classified in five categories. Maps in WGS84/UTM32, EPSG:32632.

The main output of the program STONE is a raster map
with trajectory count in each grid cell. We first noted that

about one third out of the 325,578 slope units had null val-
ues (111,219 for 475 y and 129,149 for 975 y), meaning that
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no trajectories at all were present in the corresponding
polygons. We considered those slope units equivalent to
flat areas, in which earthquake–induced rockfalls may not
occur, and disregarded them in the classification. Next,
we aggregated non–null records of the raw output at slope
unit level, by assigning the average count to each slope
unit; eventually, we classified the results using a head/tail
breaks method. We opted for this classification method for
the distribution of average values is very skewed towards
zero (cf. Figure 9(a)), and equal–interval or quantile
classification is not effective, in such cases.

On the other hand, head/tail classification is well suited
for unbalanced distribution where the average value splits
the original set into two subsets containing about 20% and
80% of the original values. The most numerous subset
is taken as a final class, while the less numerous set is
split further using the mean as a break. The process is
iterated until one gets five classes. In our case, we obtained
the break values listed in Table 3, separately for the two
return times. The table also lists the number of slope units
in each class, and the total area covered by them. Classes
are denoted as very low (VL), low (Lo), medium (Me),
high (Hi), and very high (VH), referring to the likelihood of
a rockfall occurring in the corresponding slope unit.

Uncertainty maps in Figs. 5-8 were obtained as the dif-
ference of the results of STONE initialized with source
maps corresponding the 84th and 16th percentiles of PGA
maps. In this case the distribution of values (cf. Figure
9(b)) has negative and positive values, thus we considered
as uncertainty the absolute value of the difference. Nega-
tive values were much less than the positive values, consis-
tently with the definition of uncertainty adopted here: we
expect the results from 84th percentile to be numerically
larger than the results from the 16th percentile. Moreover,
it is worth noting that the higher the ground shaking in-
tensity the lower the amplification factor, as shown in Fig.
3. As a consequence, the uncertainty maps are expected
to provide negative values in such rare cases of steep slope
and soft material (i.e., VS30 ≤ 650 m/s). In conclusion,
we applied the head/tail breaks method to the absolute
value of the difference and Table 4 shows, separately for
the two return times, the number of slope units in each
class, and the total area covered by them.

Figure 10 shows a comparison between the rockfall count
result and the slope unit average, in a selected location,
for the shortest return time, RT=475 y. The figure shows
four different zoom levels in the same location; for each
zoom level, we show on the left the results of the slope
unit–based average procedure, and on the right the corre-
sponding rockfall count map. The latter was classified in
five categories, using the head/tail method as in the case of
averaged values, with the same meaning (VL, Lo, Me, Hi,
VH). This figure illustrates the procedure of aggregation at
slope unit level, and gives an idea of the actual resolution
of simulations, applied consistently all over Italy.

Eventually, we performed a consistency check of results
with 475 y return time. In fact, we wanted to make sure
that results of simulations with STONE, aggregation and
classification of the map corresponding to PGA50

475
were

not trivial results. In fact, it is straightforward that any
slope stability issue is related to local slope angle, to some
degree. Moreover, our model for static rockfall sources
only considered slope angle as morphometric input. Thus
analyzing the degree of correlation between the final re-
sult and slope values looks like a meaningful consistency
check.

With a similar rationale, we checked the distribution of
results for rockfall count as a function of the average value
of peak ground acceleration, at slope unit level. This is
also a relevant consistency check, because results with a
trivial relationship between rockfall count and PGA would
not be a robust result, and would suggest that the seismic
forcing would be the most relevant ingredient of the mod-
eling chain – regardless of all other inputs, including the
“static” source map Pstatic(S).

To this end, we prepared a scatter plot of susceptibility
values, prior to classification, as a function of slope val-
ues, considering both values of rockfall trajectory count,
slope, and PGA, all aggregated at slope unit level. Fig-
ure 11 shows the results of this check; Figure 11(a)
shows the rockfall count vs. slope scatter plot, while Fig-
ure 11(b) shows rockfall count vs. PGA. In both figures,
each dot correspond to an individual slope unit (with non–
null value of average rockfall count, i.e., 111,219 units out
of 325,578), and the colors of the dots match those of the
uncertainty associated to susceptibility values, as shown
in Fig. 5 (RT = 475 y).

Figure 13 show a comparison of model results, i.e., the
maps of Fig. 5 for RT=475 y and RT=975 y, and the
CEDIT point inventory of seismically–induced landslides.
Even if the model adopted in this work can only describe
rockfalls, we compared separately the model results with
observed rockfalls and other kinds of landslides, to high-
light differences. Landslides in the inventory do not bear
information about the triggering earthquake event (nor
other competing parameters, like antecedent rainfall, for
example), thus we compared data with results from both
values of RT. We calculated the percentage of SU falling in
each class, in the results, and the percentage of landslides
falling within SU, in each class. We did not consider points
falling in areas predicted as null by the model, which were
not negligible (about 5% for rockfalls).

The figure shows that, for rockfalls (Fig. 13(a)-(c)), per-
centages for actual data exceeds those from the model, in
intermediate and higher classes, while it is always less than
the model, in the lowest class. As that is true for both
values of RT (actually the signal is larger for RT=975 y),
this means that the points corresponding to rockfalls are
not randomly distributed, but they fall preferentially in
higher–hazard than smaller–hazard classes. It is also use-
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Table 3: Classification of results corresponding to rockfall sources triggered by the PGA50

RT maps, for both return
times of 475 y and 975 y (cf. Section 4.3). Classification was performed using the head/tail breaks method. Maps
are shown in Fig. 5 (national) and Figs. 6-8 (details).

475 y Class
Percentage

Breaks No. Records
Total area

after break [km2]

1 81% < 10.2 89,761 86,154

2 72% 10.2–45.4 15,485 14,712

3 68% 45.4–106.9 4,082 4,029

4 68% 106.9–190.8 1,295 1,282

5 65% > 190.8 596 570

Sum 111,219 106,747

975 y Class
Percentage

Breaks No. Records
Total area

after break [km2]

1 80% < 15.1 103,645 96,732

2 72% 15.1–65.6 18,271 17,288

3 68% 65.5–150.8 4,954 4,962

4 67% 150.8–267.1 1,533 1,539

5 65% > 267.1 746 739

Sum 129,149 121,260

Table 4: Classification of uncertainty maps, calculated as the absolute value of the difference between the results of
STONE obtained from PGA16,84

RT maps. Classification was performed using the head/tail method. Maps are shown in
Fig. 5 (national) and Figs. 6-8 (details).

475 y Class
Percentage

Breaks No. Records
Total area

after break [km2]

1 75% < 2.44 83,831 84,018

2 69% 2.44–8.10 18,762 15,970

3 67% 8.10–15.97 5,812 4,705

4 67% 15.97–25.74 1,880 1,401

5 68% > 25.74 934 654

Sum 111,219 106,747

975 y Class
Percentage

Breaks No. Records
Total area

after break [km2]

1 75% < 3.25 96,612 94,337

2 68% 3.25–10.58 22,193 18,817

3 67% 10.58–20.58 6,895 5,544

4 68% 20.58–32.66 2,339 1,764

5 70% > 32.66 776 798

Sum 129,149 121,260

ful to look at non–rockfall points, Fig. 13(b)-(d): in this
case the percentages for data show almost the same distri-
butions as the model results, indicating a lower agreement
– as one should expect. The conclusions from Fig. 13 are
mostly qualitative, but we deem the conclusions we drew
sufficient as a validation, given the available information.
Results may also depend on the type of aggregation pro-
cess used here (SU average; taking the largest value would
be another viable option) and the classification of raster
counts with the head/tail method.

The results of this work were included in a WebGIS ap-
plication prepared to share with the public the results of
the project funding this research (see Section 9). The

web interface aimed at characterizing seismically–induced
rockfall hazard in Italy, within so–called zone d’allerta –
a particular zonation adopted by the Italian Civil Protec-
tion to issue geo–hydrological alerts. As such, the system
includes a wealth of information on the subject, ranging
from basic cartography about seismology, landslide inven-
tories, and geo–lithological properties, and more elaborate
products, including a seismically–induced landslide proba-
bility map prepared with the method of (Nowicki Jessee
et al., 2018) and the rockfall hazard maps proposed in
this work. Details about accessibility of the WebGIS are
in Section 8.
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Figure 6: Details of the maps in Fig. 5, within the blue rectangle in Central Italy in the four maps.

6 Discussion

We first would like to comment on Fig. 10 showing slope
units averages vs. rockfall count at grid cell level. The fig-
ure has illustrative purposes and it allows appreciating the
detail of the rockfall count maps produced by STONE in
output. The latter has 10 m resolution, as the TINITALY
DEM used in this work does. Each trajectory appears as
10 m wide because of the resolution, even if in the code
they are calculated as curves in three-dimensional space,
and DEM resolution is exploited to a maximum by intro-
ducing an additional triangulation of the topography. The
maps in the right column of the figure, (b), (d), (f), and
(h), show the superposition (total count, cell by cell) of
trajectories, and a few of them can be resolved individ-
ually, despite the classification, especially at the largest
zoom level, Fig. 10(h). We stress that this is the level
of detail applied throughout Italy, which is unique to our
framework for physically based models (Alvioli et al.,
2021; Marchesini et al., 2021). Aggregation at slope

unit level, on the other hand, was also used within other
approaches with statistical methods, e.g. inAmato et al.
(2021) and in Loche et al. (2022a). The latter is dic-
tated by the need of a mapping unit consistent with a
national–scale interpretation of the results, while the na-
tive output of our simulation has much higher resolution
– even if it does not imply higher accuracy.

Results in Fig. 5 (national) and Figs. 6-8 (details) show
that the main difference between 475 y and 975 y return
times is mostly in term of extent of the area in which haz-
ard is not null. This is consistent with our formulation for
the localization of seismically–induced rockfall source ar-
eas. In fact, the definition of Eq. (2) clearly shows that
the probability of triggering a rockfall trajectory from a
grid cell characterized by slope S and peak ground accel-
eration PGA is the product of two factors: a morphome-
tric factor, Pstatic(S), and a dynamic factor, FRT (PGA).
The former only depends on slope, and thus it is common
to the two different return times. Given that the the set
of “static” sources which can potentially be activated is
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Figure 7: Details of the maps in Fig. 5, within the blue rectangle in North–Eastern Italy in the four maps.

common to either RT cases, in virtue of Eq. (4) and the
spatial distribution of PGART values of Fig. 4 we can
understand the behavior observed in the results.

Figures 5-8 show an assessment of uncertainty, besides
the main results for hazard maps. Visual inspection is
enough to realize that larger uncertainties are associated
with higher values of hazard. To investigate this point
quantitatively, Figure 11 shows the relationship between
the trajectory count and uncertainty, both averaged at
slope unit level, for the two different return times consid-
ered here. Each slope unit corresponds to one dot; colors
of the dots correspond to the classification explained in de-
tail in Table 3 and used in Figs. 5-8; horizontal dotted
lines, instead, correspond to the classification of uncer-
tainty values, explained in detail in Table 4 and used in
the same figures quoted above.

The general trend shown in Figure 11 exhibits a clear
power–law dependence of uncertainty upon trajectory
count values. Power laws are ubiquitous and appearance

of one such (approximate) dependence, here, is not sur-
prising. We conclude from this consistency check that
uncertainty values are strongly correlated with average
trajectory count – and the dependence is not linear, but
exponential (linear in a log–log scatter plot), making re-
duction of uncertainty a priority for future work. A closer
inspection of the figure reveals that most of the rockfall
count values in the VL (very low, light green) class falls
in the VL or Lo (low) classes in uncertainty, while all of
the higher classes (Lo, low; Me, medium; Hi, high; VH,
very high) are scattered over all classes of uncertainties.
Thus, we conclude that for both return times, slope units
with small rockfall count have a substantially more robust
characterization of rockfall hazard.

Fig. 12 shows scatter plots of trajectory count vs. slope
angle, in (a), and vs. peak ground acceleration in units of
g, in (b). As in Fig. 11, each dot represents average values
within a single slope unit but, in this case, colors corre-
spond to the classes shown in Table 4 for uncertainty, and
horizontal dotted lines correspond to the classes shown in
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Figure 8: Details of the maps in Fig. 5, within the blue rectangle in Southern Italy in the four maps.

Table 3 for rockfall counts. At variance with the previ-
ous figure, the dependence on both slope and PGA values
is absolutely not obvious, and values of rockfall counts
are scattered with complex patterns both as a function of
slope, in (a), and a function of PGA values, in (b).

We conclude, from this consistency check, that no obvious
correlation exists between average trajectory count and
average slope angle (we checked that the same holds for
elevation, not shown here) and PGA values. In the lat-
ter a few dots appear to artificially align in the vertical
direction but they represent a negligible minority within
the whole sample. In general, for each interval of the tra-
jectory count variable selected by the five classes, one can
see that values of slope and PGA span over almost the
whole existing range. Results show that both Pstatic(S)
and FRT (PGA) (cf. Eq. (2)) are relevant ingredients
of the modeling chain and their contributions cannot be
disentangled within the results in a trivial way.

Eventually, we would like to comment on the significance

of our results, on more general terms. We have shown
that a physically based model is suitable for application
on the large scale, and can provide alternative estimates of
landslide (rockfall) susceptibility with respect to the sta-
tistical/machine learning approaches, widely used in the
literature for large areas (Amato et al., 2021; Loche
et al., 2022a; Wang et al., 2022). In fact, we have
set up a computing and conceptual framework capable of
running three-dimensional simulations within the program
STONE, at high resolution, for the whole of Italy. Results
of the model are readily interpreted as spatial likelihood
of rockfall occurrence. There are multiple advantages in
adopting a physically based assessment, instead of a sta-
tistical one, which is the traditional approach for large
areas.

First, with the former, one obtains a high–resolution out-
put, which can be utilized in different ways depending on
the purpose, the spatial scale, and the accuracy on input
data. In this work, we decided to aggregate results at
slope unit level – with a simple average of grid rockfall
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Figure 9: The distributions of rockfall trajectory count
values (a) and of uncertainty values (b), averaged at slope
unit level, for the two return times (RT) considered in this
work. The distribution in (a) allows for a head/tail break
classification, which we used for the left maps in Figs.
5-8, while the absolute values of the distribution in (b)
was classified with the same method, for the right maps in
the same figures; negative values in (b) are 7,240, out of a
total of 111,219 non–null values.

trajectory count per SU polygon. Slope units relate in a
straightforward way with the real world topography, and
are more suited for national scale zonations than the orig-
inal 10 m x 10 m grid. On the other hand, one can look
directly at grid cells results, if the interest is on a specific
medium– or small–scale area and, possibly, if input data
(DEM and geomorphological information on the sources)
can be replaced with higher resolution ones. Studies at in-
termediate (regional) scale within the same approach are
underway and will be published elsewhere; an application
of the general method proposed here, at small (local) scale,
was recently published by Alvioli et al. (2022b).

Second, use of a grid–based, physically based approach al-
lows introducing a temporal dependence, even if the spe-
cific model does not explicitly contain a temporal compo-
nent, nor a mechanism to model the triggering conditions
that generate landslides – rockfalls, in the case of STONE.

The novel modeling framework introduced in this work and
illustrated in Fig. 1 is one possible example of exploit-
ing such a possibility. Knowledge of spatial distribution of
the strength of the triggering phenomenon – in this case,
ground motion – allows adding a temporal component on
top of the “static” simulations provided by the model as
is. This is often implemented in hazard models using es-
timated landslide frequency relations; here, we proposed
an alternative, simple approach. A magnitude component
is also contained in the model STONE, in principle, but
we decided not to exploit that feature in this work, to ex-
plore only the introduction of different return times. Re-
cently, statistical models appeared that predict the aggre-
gated size of landslides, in addition to spatial likelihood
(Di Napoli et al., 2022), but certainly there is no stan-
dard approach to do that, yet.

7 Conclusions

Physically based rockfall simulations are usually per-
formed in a time–independent fashion, and result in sus-
ceptibility maps whose content is limited to the relative
spatial likelihood of rockfall occurrence, with a few no-
table exceptions. In this work we introduced a new mod-
eling framework to obtain the best approximation, with
the available data and tools, to seismically induced rock-
fall hazard for different return times in Italy. The proposed
framework, summarized in Fig. 1, includes heterogeneous
data and models, combined in successive steps and, most
notably, with the introduction of a novel approach to use
ground shaking maps to infer scenario–based triggering of
static rockfall sources, otherwise obtained solely from mor-
phometric analysis. This study allows drawing the follow-
ing conclusions.

• The overall conceptual and computational framework
can be effectively applied on the whole of Italy on
a 10 m grid. This is a relatively high resolution for
a national–scale application; nevertheless, the results
produced here were aggregated at (coarser) slope unit
level, for ease of interpretation and to mitigate the
effect of inaccuracies and approximations.

• A novel, simple seismic trigger model can be de-
vised to link ground shaking and activation of rock-
fall sources, in rockfall–prone areas. The model maps
peak ground acceleration values into a probability of
source activation, which in turn is the main ingredient
to simulate geometrical trajectories using the model
STONE. Similar or more advanced physical models
in principle can use the same input. Additional func-
tional forms for the mapping of PGA into probabili-
ties can be similarly explored.

• Seismic shake maps for different return times help cal-
ibrating a dynamic trigger; here, we considered two
different return times. In principle, additional return
times can be considered with little modification (cal-

18



Figure 10: Comparison of slope unit average vs. actual rockfall count, at increasing zoom level, top to bottom; (a)
is the same as Fig. 6(a). Left figures – (a), (c), (e) and (g) – show results aggregated at slope unit level (as in all
of the other figures in this work), while figures in the right – (b), (d), (f) and (h) – show the corresponding rockfall
count maps, at the same zoom level, before averaging, classified with head/tail breaks as well. Blue rectangles show
the extent of the next zoom level.
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Figure 11: Relationship between the trajectory count and
uncertainty, both averaged at slope unit level, for the two
different return times considered here. The different colors
correspond to the five classes of trajectory count, used
in all of the figures (maps) shown in this work, and the
horizontal lines correspond to the breaks used to define
uncertainty values, which are different in (a) and in (b),
as well as in all the other figures.

ibration), and a hazard can be calculated for a wider
range of temporal component. We found that the
main difference between the 475 y and 975 y return
times is mostly about the extent of the area where
hazard is not null, and that uncertainty grows sub-
stantially with growing hazard.

• We judge the results robust, in that we found no obvi-
ous correlations in hazard values vs. slope angle, and
in hazard values vs. peak ground acceleration values
– suggesting the main inputs of the modeling chain
cannot be easily disentangled, and both contribute to
the complexity of the output maps.

Possibilities offered by the same approach include real–
time assessment of rockfall hazard. Replacing the FRT de-
pendence on return time, in the model Ptrigger(S, PGA) =
Pstatic(S)FRT (PGA), with a real–time ground

shaking map PGA would require proper calibration on

Figure 12: Scatter plots of trajectory count (i.e., the
STONE output) vs. slope angle (a) and vs. peak ground
acceleration, in units of g (b). All quantities averaged at
slope unit level; STONE results and PGA corresponding
to RT = 475 y. Dots correspond to individual slope units.
Colors match those of the uncertainty class the slope unit
(as in Fig. 5) and horizontal dotted lines correspond to
the separation into susceptibility classes (as in Fig. 5 and
Table 4).

different events occurred in Italy, which is possible but
beyond the scope of this work. Additional calibration,
with accurate data, would also allow to specify different
functional forms for the F (PGA) model. In fact, the linear
model for F (PGA) adopted here is the simplest choice
for mapping PGA values into the [0, 1] interval required
by the formulation of the model, but different functional
forms may show better predictive performance, which was
not assessed for specific events, here.

In conclusion, we believe that the new model for seismic
triggering of rockfall simulations seems promising; in this
case it was calibrated within the range of PGA values
spanned by the maps for two return times, but possibilities
go beyond that. Eventually, we stress that an “absolute”
model – i.e., a model which would work in real–time for
any earthquake event, would require corresponding map-
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Figure 13: Partial validation of the hazard maps obtained in this work, Fig. 5, using the CEDIT (point) inventory
of seismically–induced landslides. (a)-(c) data for rockfalls; (b)-(d) data for any other kind of landslides, including
unclassified points. Model results are always for rockfalls, studies in this work: (a)-(b) model results for RT=475 y;
(c)-(d) model results for RT=975 y. The insets show the same plot as in the larger boxes, but in logarithmic scale.
The apparent difference between RTs in “Data” proportions is due to the different spatial distribution of each class.
VL: very low; Lo= low; Me: medium; Hi: high; VH: very high.

ping of “absolute” PGA values, which is still not available
to us but work in this direction is under way.

8 Data availability

Maps obtained in this research can be visualized
with the WebGIS available on the web page of
the project Multiscale methods for the zonation of

seismically–induced landslide hazard in Italy, https:

//frasi-project.irpi.cnr.it/, and are available for
download in vector format at the main slope units
project page, https://geomorphology.irpi.cnr.it/

tools/slope-units. The maps proposed in this work
are encompassed by the bounding box 36.40866N–
47.11408N and 19.5446E–6.502227E (EPSG:4326), cover-
ing the whole of Italy.
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