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Abstract

The majority of landslide susceptibility and hazard zona-
tions are implemented with statistical methods, espe-
cially on large scales: mostly because the data needed
for physical simulations are only available in small areas.
Physically—based simulations for slope stability are con-
ceptually different from widely used statistical approaches.
Both methods have specific advantages, depending on
available data, their type and resolution, and the aim of
the study. Here, we perform a hazard zonation based on
the physical model STONE for the simulation of rockfalls,
at 10 m resolution consistently all over Italy, and aggre-
gating results at the slope unit level. The novelties, here,
are: (i) the introduction of a seismic trigger for rockfalls,
which adds a temporal component to an intrinsically static
model and allows to obtain an estimate of seismically in-
duced rockfall hazard, (ii) high-resolution application of
the model at national scale, and (iii) implementation of
the results in a WebGIS. Peak ground acceleration maps
with different return times including seismic amplification
represent the earthquake trigger. A data—driven map of
possible rockfall sources all over Italy, mapped by experts
in sample representative locations, allowed statistical gen-
eralization to unsurveyed areas, at national scale. Eventu-
ally, application of a simple linear transformation, to map
values of peak ground acceleration into activation prob-
ability of sources, links “static” rockfall simulations with
“dynamic”, time—-dependent triggering. Results are maps
of rockfall susceptibility with different return times, i.e.,
a step forward to the full assessment of rockfall hazard.
Maps of hazard values and corresponding uncertainties,
aggregated at slope unit level and categorized, are readily
available for download, and for visualization in the new
WebGIS. The new model for seismic triggering of rockfalls
can be applied at the local and regional scale, calibrated
with specific earthquake events instead of the return time
scenarios considered here. On the temporal scale, this ap-
proachis suited for application in near-real time.
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Highlights
e We perform physical rockfall simulations at 10 m res-
olution all over Italy

e A novel seismic trigger mechanism adds a dynamic
component to the static model

e Seismic shake maps for different return times help cal-
ibrating a dynamic trigger

e Susceptibility maps for different return times are a
new step towards rockfall hazard
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1 Introduction

Co-seismic landslides are long recognized as one of the
most prominent ground effects of earthquakes, besides de-
formations, liquefaction, and surface faulting, resulting
from ground shaking due to the propagation of seismic
waves (Keefer, 2002). Waves propagate in all directions
from the epicenter of the earthquake and ground effects
can occur at considerable distance from the initial surface
rupture (Dai et al., 2011; Pokharel et al., 2021). As-
sessment of the distribution of landslides caused by a spe-
cific earthquake, their number, size and runout distance is
key to infer the secondary hazard posed by landslides trig-
gered by an earthquake (Harp et al., 2011; Fan et al.,
2019).

As most earthquake—induced landslides in Italy are rock-
falls (Martino et al., 2014; Caprari et al., 2018;
Romeo et al., 2017), in this work we adopted a spe-
cific physically based model to describe this kind of land-
slides. A rockfall is a rock block detached from a cliff
by sliding, toppling or falling, and subsequently falling
independently. It falls along a vertical or sub—vertical
slope by bouncing and flying along ballistic trajectories,
or by rolling on talus. The block motion comes to an
end when it has lost all of its energy during impacts or
by friction. Here, we describe rockfall trajectories using a
simple three-dimensional program called STONE, devel-
oped two decades ago by Guzzetti et al. (2002). The
model is typically used for rockfall susceptibility or risk as-
sessment on specific sites/infrastructure (Guzzetti et al.,
2003, 2004; Santangelo et al., 2019; Alvioli et al.,
2021).

The main novelty introduced in this work is a mechanism
to combine information from static, time— and trigger-
—independent potential rockfall sources, with scenarios for
peak ground acceleration (PGA) due to seismic shaking in-
cluding ground motion modifications induced by sub-soil
site condition. This allows obtaining probabilistic maps
of seismically—induced rockfall sources, linked to a given
return time, corresponding to the return time associated
with the selected PGA scenarios. Thus, the link between
a seismic trigger with given return time effectively adds a
temporal component to the static model.

The method, in turn, assumes knowledge of pre—existing
conditions for the possible detachment of a block, which we
establish in a probabilistic way based on sole morphomet-
ric considerations (Alvioli et al., 2021). The process of
detachment of blocks due to ground shaking is a complex
one (Huang et al., 2011), and the method presented
here is the simplest yet effective way we could devise to
link ground shaking and rockfall triggering. Simulations
of rockfall trajectories initiated from the triggering loca-
tions result in maps representing the spatial likelihood of
rockfall occurrence.

On the other hand, the model does not explicitly provide a
quantitative measure of the magnitude of expected events;

each simulated trajectory does not embed information on
the size, or destructive power, of the falling block. Thus,
considering spatial distribution of PGA values correspond-
ing to earthquake events with given return times, we even-
tually obtain an overall assessment for seismically—induced
landslide hazard at national scale, in Italy, excluding the
magnitude of such events.

Results of this work are aggregated at slope unit level.
Examples of landslide studies based on the same national
slope unit map exist in the literature. They discussed a
conceptual debris flow model (Marchesini et al., 2020),
rockfall susceptibility using STONE but no specific trigger
(Alvioli et al., 2021), artificial neural networks (Am-
ato et al., 2021) and a statistical model for landslide
susceptibility for different landslide types in Italy (Loche
et al., 2022a).

This work is organized as follows. Section 2 provide mo-
tivations and a brief review of literature relevant to co—
seismic landslide hazard, and rockfall hazard. Section 3
lists and briefly describes the data used here, in Section
3.1, the software used for the completion of this work, in
Section 3.2, and the details of the study area, in Sec-
tion 3.3. Section 4 describes the basics of the approach
adopted here, and it is organized in subsections corre-
sponding to the different steps of our approach. Section
5 illustrates the results obtained for earthquake—induced
rockfall hazard, while Section 6 contains a critical dis-
cussion of the results and Section 7 lists the conclusions
that can be drawn. The maps obtained in this work are
available for download and visualization in a WebGIS, as
described in Section 8.

2 Background

Post—seismic landslides may occur well after the event and
considerable effort has been devoted to the study of their
residual hazard (Yamaguchi and Kasai, 2022; Loche
et al., 2022b). Landsliding frequency increases after a
large earthquake, and the effect may persist for years, or
decades (Marc et al., 2015; Massey et al., 2022).
Complete landslide hazard assessment requires the joint
knowledge of the spatial likelihood of occurrence (suscep-
tibility), of its magnitude, and of its temporal depen-
dence (Nadim, 2013; Alvioli et al., 2018). Specif-
ically, rockfalls are among the most prominent types of
landslides caused by earthquakes, with examples in many
earthquake— and rockfall-prone areas of the world (Wick
et al., 2010; Massey et al., 2014), also from events in
the past (Owen et al., 2008; Ferndndez et al., 2021).
One limitation in explicitly dealing with rockfalls is that
landslide inventories often do not distinguish the different
types of landslides.

The literature contains a vast body of work about
earthquake—induced landslide susceptibility. Recent stud-
ies feature statistical methods with a variable selection



of spatial predictors, and a few predictors associated to
specific earthquake events. The latter may be intended
as dynamic predictors, to mimic temporal dependence of
the action of seismic shaking on pre—existing, static terrain
conditions (Nowicki Jessee et al., 2018; Tanyas et al.,
2019a; Valagussa et al., 2019). Dynamic predictors
represent quantitative measures of earthquake intensity;
examples are peak ground acceleration, peak ground ve-
locity, or modified Mercalli intensity. Variations of such
methods were devised to incorporate the magnitude of
landslide distribution (Tanyas et al., 2019b).

Nevertheless, a truly time—dependent approach requires
considerable additional information, to account for differ-
ent possible events with different characteristics of ground
shaking scenarios. This can be accomplished by stochas-
tic simulations based on sophisticated statistical analysis
(Lombardo and Tanyas, 2021). A totally different ap-
proach — adopted in this work — stems from the use of
physically based models for the description of landslide oc-
currence. Most physically based models embed both spa-
tial and time dependence and, in principle, they may be a
good fit for the assessment of landslide hazard, provided
a sound mechanism to link seismic shaking and landslide
triggering can be devised.

One existing method to describe co—seismic slope behavior
is the rigid-block method of Newmark (see Wang et al.
(2016) for the case of the Wenchuan earthquake, and ref-
erences therein), which considers the friction of blocks slid-
ing on an inclined plane when subject to accelerations due
to ground shaking. The method is typically used to es-
timate displacements of different locations hit by earth-
quakes, and displacements rates may be related to the
rate of occurrence of landslides/rockfalls, provided suffi-
cient data is available for calibration. We did not consider
this approach, here.

The model STONE, adopted here to describe rockfalls tra-
jectories, does not contain a temporal component, nor does
it implement seismic shaking as an input for the initiation
of rockfalls. It just calculates geometric trajectories for
given starting points, or sources. Thus, to use the model in
combination with ground motion scenarios, one solution is
to prepare different input source maps for different earth-
quake scenarios. This also allows including the effect of
stratigraphic amplification (Assimaki et al., 2005); we
did not include topographic amplification, instead (Pig-
nalosa et al., 2022). Examples exist of accurate analysis
of predisposing factors to investigate the likelihood of rock
faces to be destabilized by ground shaking (Huang et al.,
2011; Mavrouli et al., 2009).

To the best of our knowledge, all of the existing mod-
els comparable with STONE (RockGIS, (Matas et al.,
2017); Rockyfor3D, (Dorren et al., 2022) and refer-
ences therein; 2D CRSP, (Jones et al., 2000) require
very similar input, and embed no triggering mechanism.
In the case of CRSP, recently Kanari et al. (2019) inves-

tigated the relationship between the blocks’ initial velocity
and PGA values, and concluded that the initial velocities
are almost irrelevant, as far as the blocks’ travel distance
is concerned. The same holds true for STONE (which we
checked), in which initial velocity can be configured; this
is the main reason why we devised a different way to relate
PGA and triggering probability.

An example of rockfall hazard calculated using a three-
dimensional model, branched from STONE and called Hy—
STONE (Agliardi and Crosta, 2003), was applied in
Ttaly for the Friuli Earthquake of 1976 (Valagussa et al.,
2014). In that case, the authors included magnitude es-
timated from frequency—size relationship of rockfalls in
the study area, and used seismic—hazard scenarios with
different annual frequencies of occurrence. The probabil-
ity of rockfall triggering was obtained with a discriminant
function analysis using slope and PGA as input variables.
The model applied here is simpler than the referenced one
— but it has the advantage of using amplified PGA i.e.,
PGA at flat outcropping intact rock modified by the local
site conditions), and of being applicable to an area as large
as the whole of Italy, with the potential of being further
developed in a near-real time approach.

3 Materials

Here we describe materials used to generate PGA maps, to
perform simulations of rockfall trajectories, and to aggre-
gate and visualize results — separately for data and soft-
ware.

3.1 Data

The PGA maps used in this work, developed by Falcone
et al. (2021) and Mendicelli et al. (2022), exploited a
large database of seismic microzonation data published by
the Italian Civil Protection Department (Benigni et al.,
2018) and from the Italian Institute of Geophysics and
Volcanology (INGV). The data included:

e A set of about 40,000 continuous boreholes, useful to
define lithological successions existing in Italy.

e About 1,200 down—hole seismic tests and 3,000 mul-
tichannel analysis of surface waves, which were asso-
ciated with soil covers (i.e., clay, sand, and gravel)
and geological bedrock recognized from about 4,200
borehole logs. The data allowed extraction of pro-
files for the shear wave velocity, Vg, and the aver-
age shear wave velocity of the upper 30 m, Vgsg, for
each lithotype of interest (Mori et al., 2020). For
the same purpose, additional data were retrieved from
literature, such as the decay of secant shear modulus
according to the shear strain increase (see Falcone
et al. (2021), and references therein).

e Acceleration response spectra in Italy, obtained from
the reference seismic hazard corresponding to 475 y
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Figure 1: A diagram representing the overall framework
for the production of rockfall hazard maps. The upper
part of the diagram (maps and boxes in blueish colors)
describes the ingredients needed to perform this study,
obtained from previously published work; the lower part
(maps and greenish colors) shows the activities specifically
developed and implemented for this work, as far as rock-
fall modeling is concerned. See Fig. 2 for a larger version
of the thumbnails in (a) and (b).

and 975 y return periods (Meletti and Montaldo,
2007; Montaldo and Meletti, 2007). These are
two of the nine return times available from the INGV
website.

Section 4 describes how the data above were useful to
obtain PGA maps for the two return periods, 475 y and
975 y, considered in this work.

Data used to perform rockfall simulations with STONE
are as follows. Inputs of the code are a digital elevation
model (DEM), a map of rockfall sources at the same reso-
lution of the DEM, and maps containing numerical values
of parameters used in the code. The method presented is
this paper builds on the application described by Alvi-
oli et al. (2021). In the cited work, the model STONE
was still applied at national level, but limited to a buffer

around the railway network (about 24,000 km?), and re-
gardless of any particular trigger.

Here, we applied the same code for rockfall trajectory
simulation on all of Italy, instead (about 240,000 km?);
we also extended the same method for the probabilistic
localization of potential rockfall sources, subject to the
further constraint of selective activation on the basis of
different PGA values. Thus, in addition to the PGA
maps corresponding to different return time scenarios, we
used the same input data as in Alvioli et al. (2021),
namely:

e A DEM with national coverage, with 10 m grid size,
named TINITALY (Tarquini et al., 2007) (shown
in Fig. 1(a) and Fig. 2(a), along with a map of
subdivision in physiographic units of Italy (Guzzetti
and Reichenbach, 1994)).;

e A lithological map of Italy, scale 1:100,000, con-
taining 19 lithological classes and developed specifi-
cally for the purpose of aiding physically—based slope
stability assessment (Fongo, 2018; Bucci et al.,
2022). Each lithological unit in the map was asso-
ciated to specific range of input parameters of the
code STONE, namely friction (dynamic parameter,
relevant to the rolling state of masses, in STONE)
and normal and tangential restitution (relevant for
the bouncing impacts on the ground). Numerical val-
ues are listed in Table 1; a map is in Fig. 1(b) and
Fig. 2(b).

e A map of sample potential source area for rockfalls
in Ttaly, from expert interpretation of Google Earth™
images. A detailed description of the mapping crite-
ria and of the relevance of such map for building a
probabilistic model of rockfall sources, of course, is in
Alvioli et al. (2021) and will be briefly summarized
in Section 4.4; a sample Google™ image with a small
sample of expert-mapped polygons is in Fig. 1(c).

e A national slope unit map (Alvioli et al., 2020),
containing more than 300,000 slope unit polygons, of
variable shape and size, generated with the software
r.slopeunits (Alvioli et al., 2016). Slope units ex-
clude plains and cover 224,000 km?, out of the the
total area of Italy, about 300,000 km?; a thumbnail
image showing overall coverage of slope units is in

Fig. 1(d).

e An inventory of seismically—-induced landslides, col-
lected by the Centro di Ricerca per i Rischi Geo-
logici (CERI), and called Catalogo degli Effetti Defor-
mativi al suolo Indotti da forti Terremoti in Italia”
(CEDIT), consisting of 2,058 landslide points and
used for partial validation in this work.

3.2 Software

Most of the GIS analyses described in this work were per-
formed in GRASS GIS running in a Linux OS, with ex-
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Figure 2: The physiographical, topographical, lithological settings of Italy and relationships with seismic hazard and
seismic ground effects. (a) Subdivision in physiographic areas (originally defined by Guzzetti and Reichenbach
(1994) and further modified by Alvioli et al. (2021)), consisting of eight main provinces and further split in a total
of 29 sections (¢f. Table 2); the underlying topography elevation is also shown. (b) Lithological map recently obtained
by Bucci et al. (2022), at the scale 1:100,000, containing 19 classes (¢f. Table 1). (c) Seismic hazard levels in Italy,
represented by maximum ground acceleration with exceeding probability of 10% in 50 years (Stucchi et al., 2004);
full black dots are seismic—induced rockfalls (1100), while blue circles are any other type of landslides (1606, of which
475 of unknown type; from CEDIT database (Martino et al., 2014; Caprari et al., 2018)).

tensive use of bash scripting and parallel computing. The
national slope unit map was obtained previously using the
r.slopeunits module, by Alvioli et al. (2016); the opti-
mization procedure and scripts were updated as in Alvioli
et al. (2020); Pokharel et al. (2021). The maps of ex-
pected peak ground acceleration were obtained using the
NC92Soil software (Falcone et al., 2021). Simulations
of rockfall trajectories were obtained using the software
STONE (Guzzetti et al., 2002), parallelized in a data—
distributed framework using scripts originally developed
by Alvioli et al. (2021). Visualization in a WebGIS re-
quired the software G3W-SUITE, a modular client—server
application based on QGIS—Server for the publication of
interactive cartographic projects, compatible with QGIS
3.16 LTR.

3.3

The area studied in this work is the boot—shaped Ital-
ian peninsula, consisting of about 300,000 km?, located in
southern Europe. Italy has two main mountain ranges;
the Apennines, crossing the peninsula roughly from North
to south, and the Alps, of which Italy contains the south-
ern parts. The largest plain is the Po Valley and the two
major island are Sicily and Sardinia. The physiographic
setting of Italy was nicely summarized by the classifica-
tion of Guzzetti and Reichenbach (1994), who dis-
tinguished eight main physiographic provinces (¢f. Fig.
2), namely: 1., Alpine Mountain System; 2., North Italian
Plain; 3., Alpine-Apennines Transition Zone; 4., Apennine
Mountain System; 5., Tyrrhenian Borderland; 6., Adri-

Study area

atic Borderland; 7., Sicily; 8., Sardinia. They are further
split in a total of 29 (originally 30) sub—units (sections),
describing the general topographic and geomorphological
diversity of Italy. The boundaries between provinces are
easily traced and correspond to major morphological, geo-
logical and coastline features, while the borders of sections
are distinct and generally more open to interpretation
(Guzzetti and Reichenbach, 1994). More recently,
the physiographic sections were considered for further clas-
sifying Italy into topographic—morphologic clusters using
hydrological basins as the basic classification unit; the in-
terested reader is referred to Alvioli et al. (2020) for
further details and results. Figure 2(a) shows a full-size
version of the thumbnail of physiographic zones in Fig.
1(a), overlaid to a shaded relief map. The physiographic
zones correspond with the ones listed in Table 1.

Italy contains a large variety of geological features, ap-
proximately corresponding with the physiographic clas-
sification given above. The country is in active geody-
namic evolution, resulting in volcanoes, earthquakes, and
widespread land and coasts instability. Geology in the
area is controlled by the progressive approaching of two
megaplates, Eurasia to the north and Africa to the south.
The geology of Italy is remarkably varied and contains
rock series from all eras and periods (Bosellini, 2017).
The Alps chain are a thrust belt with a double vergence,
resulting from the collision of the European and African
continental margins between the Middle Cretaceous and
the Late Eocene. The Po Plain is an alluvial region, re-
sulting from marine (older) and fluvial (more recent) sed-
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Table 1: Numerical values of the parameters used in STONE. “Class ID” and “Lithological Class” refer to the 19
classes identified in the geo-mechanical map of Bucci et al. (2022). The parameter values shown here were used
before in STONE by Alvioli et al. (2021); the program performs random sampling of values of the parameters in a

range around the nominal values, which we set to = 10%.

Class 1D Lithological Dynamic Normal Tangential
Class Friction Restitution | Restitution
L1 Anthropic deposits 0.65 35 55
L2 Alluvial, lacustrine, marine, eluvial, colluvial dep 0.80 15 40
L3 Coastal deposits, not related to fluvial processes 0.65 35 55
L4 Landslides 0.65 35 55
L5 Glacial deposits 0.65 35 55
L6 Loosely packed clastic deposits 0.35 45 55
L7 Consolidated clastic deposits 0.40 55 65
L8 Marls 0.40 55 65
L9 Carbonates-siliciclastic and marl sequence 0.35 60 70
L10 Chaotic rocks, mélange 0.35 45 55
L11 Flysch 0.40 55 65
L12 Carbonate Rocks 0.30 65 75
L13 Evaporites 0.35 45 55
L14 Pyroclastic rocks and ignimbrites 0.40 55 65
L15 Lava and basalts 0.30 65 75
L16 Intrusive igneous rocks 0.30 65 75
L17 Schists 0.35 60 70
L18 Non-schists 0.30 65 75
L19 Lakes, glaciers 0.95 10 10

imentation, between the the Southern Alps and Northern
Apennines. The Apennines are the result of the collision of
the western continental margin of the African Promontory
with the Sardinia—Corsica block, which happened mainly
during Miocene-—Pliocene time, and consists of a series
of east—verging areas. The Apennine chain can be sub-
divided into Northern Apennines and Central-Southern
Apennines, bounded by regional transcurrent faults. Most
of Sicily belongs to the northern continental margin of
Africa, while Sardinia (with Corsica, France) is a frag-
ment of the European continent. Additional details on
the geology of Italy can be found in Bosellini (2017),
and references therein. A full geo-lithological map at
1:100,000 scale, the highest geographical scale for which
a digital map is available for the whole of Italy, was re-
cently obtained by Bucci et al. (2022) specifically for
geo—mechanical modeling (used here). Figure 2(b) shows
a full-size version of the thumbnail of the geo-lithological
map in Fig. 1(b); the lithological classes correspond with
the ones listed in Table 1.

The remarkable extension of Italy in latitude result in di-
verse climatic conditions. The orography of the Apennines
and the Alps substantially influence weather fronts, winds,
and temperature distribution, exposing different areas of
Italy to specific types of circulation (Fratianni and Ac-
quaotta, 2017; Mazzoglio et al., 2021). The Alps
have a barrier effect from the cold currents from the North,
while the Apennines limit the influence of moist air to the
Tyrrhenian side along the entire peninsula, and protect

from the cold easterly winds that hit the Adriatic side
during winter. The Mediterranean Sea has a mitigating
effect on climate; the distribution of atmospheric pressure
over the Peninsula and over the surrounding seas is one of
the fundamental factors which affects the meteorological
regimes. Due to these factors, the main climatic regions
according to the Koppen classification falls entirely within
the Mediterranean climate area, which belongs to a sub-
tropical climate type with dry summers, with areas be-
longing to other meso—thermal climates and situations of
micro—thermal or altitude climates. A full summary of cli-
matic classification based on the Képpen-—Geiger scheme,
temperature and precipitation distribution in Italy is in
Fratianni and Acquaotta (2017). They also argue that
onset of climatic changes shows gradual increase in tem-
perature and a change in the annual distribution of pre-
cipitation throughout the country (Fratianni and Ac-
quaotta, 2017). Projected climatic changes are expected
to have an effect on slope stability, in terms of frequency
and magnitude of landslide phenomena (see e.g., Alvioli
et al. (2018) and references therein).

The geology of Ttaly determines a substantial seismic haz-
ard in many areas of the country. The INGV publishes
seismic hazard maps, i.e., maps of the expected seis-
mic shaking due to an earthquake. Figure 2(c) shows
a map of the expected maximum ground acceleration
with exceeding probability of 10% in 50 years (Stucchi
et al., 2004), in units of the acceleration of gravity,
g. Largest values (larger than 0.225 g) are expected in



Calabria, South—Eastern Sicily, Friuli-Venezia Giulia and
throughout the Central-Southern Apennines. The figure
also shows a point inventory of earthquake—induced land-
slides, known as CEDIT (Martino et al., 2014; Caprari
et al., 2018). It contains a total of 2,058 points, classified
as 16 different types of landslides. The vast majority are
rockfalls (1,093), though 459 points are unclassified.

4 Methods

This section describes the framework adopted to ob-
tain maps of seismically—induced rockfall hazard in Italy.
These include: (i) a specific choice of mapping units, for
the analysis of mapped rockfall sources and to aggregate
results; (ii) a numerical model to simulate in three di-
mensions the trajectories of falling blocks; (iii) maps de-
scribing the expected seismic shaking with two different
return times; (iv) a novel mechanism for localizing initi-
ation points of trajectories, linking the seismic trigger to
predisposing factors defined by local topography and dif-
ferent physiographic settings in Italy. The overall frame-
work adopted in this work is summarized graphically in
Fig. 1. We described each of these topics in separate
sections, as follows.

4.1 Optimized slope unit delineation

Slope units are mapping units well suited for landslide
studies, both with statistical (Tanyas et al., 2019b;
Pokharel et al., 2021) and with physically based ap-
proaches (Doménech et al., 2020; Alvioli et al., 2021;
Lépez-Vinielles et al., 2021; Marchesini et al.,
2021; Alvioli et al., 2022a). They are polygons de-
limited by drainage and divide lines obtained solely from
a specific DEM. The advantage of using slope units instead
of the standard grid cells is their correspondence with the
real landscape; a slope unit is a representation of a hill
slope on a digital landscape. As such, one can assume
with reasonable confidence that the likelihood of landslide
occurrence within a given slope unit polygon is uniform.
This gives a second, important advantage: inaccuracies or
mismatches of input data for a specific model are miti-
gated by aggregation at slope unit level (Jacobs et al.,
2020).

Drainage and divide lines for a specific DEM are not univo-
cally determined. This is due to different existing meth-
ods and software to perform such delineation and, most
importantly, to the required level of detail. That results
in slope units of different sizes, due not only to differences
in local terrain roughness but also to the choice of a scale
for the analysis. This, in turn, is reflected in different
parameters controlling the size of slope unit in dedicated
software.

In this work, we adopted slope units obtained from the
software r.slopeunits (Alvioli et al., 2016). Parame-
ters controlling the scale of slope units delineation, in the

software, were optimized at the national level by Alvioli
et al. (2020). Optimization was performed using only
morphometric considerations, by maximizing the capacity
of the polygonal map of segmenting a DEM with 25 m grid
size! into mapping units with well-defined slope aspect.
Details of the delineation and optimization procedure are
given in the cited bibliography, for the interested reader; a
thumbnail image showing the portion of Italy covered by
the 300,000 slope unit polygons is in Fig. 1(d).

4.2 Simulation of rockfall
with STONE

The numerical model used in this work, STONE, describes
trajectories of falling blocks from their detachment point
to their rest point downhill. In the model, a rockfall tra-
jectory is a combination of three possible processes: free
falling, bouncing and rolling. Each of them is controlled
by mechanical laws described by simple equations, in the
computer program. The code, however, does not contain
a mechanism for the actual detachment of blocks. This is
due to the limitation posed by the amount of knowledge
required to model the detachment process: data about the
conditions of the rocks, their fracturing pattern, weather-
ing state, and others (Mavrouli and Corominas, 2020;
Hendrickx et al., 2022; Nunez-Andrés et al., 2023).
In addition, a specific description of the mechanism, like
sliding, toppling or falling, would be required to link those
conditions and local morphology of the rocks to an actual
probability of detachment.

trajectories

In this work, we deal with seismically—induced rockfalls.
We devised a probabilistic procedure to define the loca-
tions of possible detachment points as a function of slope,
and a selective triggering of the possible sources driven
by seismic ground shaking. This allows producing a map
of rockfall source locations (one of the main inputs of
STONE) as a function of ground shaking scenarios and
of local topography. Details of this process are in Section
4.4, and are original of this work.

The calculation of trajectories themselves, instead, is com-
pletely delegated to runs of the numerical code, initialized
with a DEM map, the map of sources, and maps of lo-
cal values of numerical coefficients controlling the different
processes involved in the calculations. The latter consisted
in three different coefficients: friction, controlling the be-
havior of blocks during rolling, and normal and tangen-
tial restitution, controlling energy loss during bouncing
impacts on the ground. Table 1 shows numerical val-
ues of the coefficients, for different lithological classes at
1:100,000 scale (Bucci et al., 2022), adopted both in
Alvioli et al. (2021) and here.

The model STONE describes falling blocks as point—like,

1The resolution of the DEM used to prepare slope units, 25 m,
is smaller than the resolution of the DEM used here for simulations;
this does not affect results in any way, as slope units are only used
to aggregate final results.



Table 2: The different physiographic provinces (rows in bold) and sections of Guzzetti and Reichenbach (1994),

modified as in Alvioli et al. (2021). The table shows the

parameters a and b appearing in Eq. (3) and controlling

the probability of having static rockfall sources Pstqtic(S) as a function of slope, S. The areal extent of each
topographic unit, its percent surface and area covered by slope units (SU) are also listed. See Fig. 2 for map of the
geographical distribution of the physiographic provinces and sections.

Province/Section a b Extent Percent SU Area
[km?] [km?]
1.: Alpine Mountain System - - 52,010 17.4 51,739
1.1: Western Alps 0.11 5.54 16,274 5.4 16,547
1.2 & 1.3: Central-Eastern Alps & Carso 0.13 4.32 35,735 11.9 35,191
2.: North Italian Plain - — 46,531 15.54 4,580
2.1: Po Plain 0.21 6.86 32,702 10.9 1,694
2.2: Veneto Plain 0.11 13.00 9,426 3.2 550
2.3a: North-Western Alpine Foothills 0.11 8.59 3,103 1.0 1,950
2.3b: South-Western Alpine Foothills 0.31 4.30 1,298 0.4 359
3.: Alpine—Apennines Transition Zone - - 6,313 2.1 6,117
3.1: Monferrato Hills 0.11 2.92 2,322 0.8 1,918
3.2: Ligurian Upland 0.11 5.71 3,991 1.3 4,199
4.: Apennine Mountain System - - 80,947 27.0 82,179
4.1: Northern Apennines 0.11 6.78 22,393 7.5 23,886
4.2: Central Apennines 0.11 6.41 16,835 5.6 17,386
4.3: Molise Apennines 0.11 9.70 4,920 1.6 5,136
4.4: Molise-Lucanian Hills 0.11 9.64 8,097 2.7 8,345
4.5: Lucanian Apennines 0.15 7.06 12,890 4.3 12,651
4.6: Sila 0.11 8.31 6,203 2.1 5,638
4.7: Aspromonte 0.11 5.98 5,337 1.8 4,959
4.8: Sicilian Apennines 0.11 6.39 4,262 1.4 4,176
5.: Tyrrhenian Borderland - - 37,857 12.64 29,404
5.1: Central Italian Hills 0.11 8.32 25,346 8.5 20,022
5.2: Tosco-Laziale Section 0.17 2.92 6,136 2.0 5,181
5.3: Lazio-Campanian Section 0.11 7.43 6,375 2.1 4,201
6.: Adriatic Borderland - - 31,062 10.35 17,521
6.1: Central Apennine Slope 0.11 5.41 9,023 3.0 8,230
6.2: Murge-Apulia Lowland 0.11 36.77 20,236 6.8 7,923
6.3: Gargano Upland 0.11 3.00 1,731 0.6 1,368
7.: Sicily - - 21,105 7.1 18,867
7.1 & 7.2: Marsala Lowland & Sicilian Hills 0.11 14.72 14,285 4.8 13,273
7.3: Iblei Plateau 0.11 11.81 5,321 1.8 4,178
7.4: Etna 0.17 19.10 1,499 0.5 1,416
8.: Sardinia - - 23,790 7.9 19,320
8.1: Sardinian Hills 0.11 19.57 16,404 5.5 14,548
8.2: Gennargentu Highland 0.11 6.50 2,580 0.9 2,209
8.3: Campidano Plain 0.11 23.22 1,946 0.6 190
8.4: Iglesiente Hills 0.11 23.20 2,844 0.9 2,375

and neglects air drag, as their velocity is usually not large
enough to make it relevant. The code considers each grid
cell selected as a rockfall source and calculates the trajec-
tory followed by the block until it comes to a rest. The
trajectory depends on the topography and on the coeffi-

cients controlling the loss of velocity during bouncing and
rolling. The topography is described using a terrain regu-
lar network of triangles, built on the equally spaced eleva-
tion points of the input DEM. The simulation is not fully
dynamical, in that the code does not consider the shape



and mass of blocks; this makes the simulation fast, and
we can simulate hundreds of different trajectories for each
source cell. In fact the code contains a certain degree of
randomization involving the detachment angle and terrain
coeflicients, which makes trajectories simulated from the
same source point slightly different from each other. The
degree of variability is selected by the user, and it usually
ranges between +5% and +10% around central values in
Table 2, for the coefficients, and around the horizontal
direction, for the angle of detachment.

In the code, the possibility for the blocks to break apart
into smaller fragments (Matas et al., 2017; Nufez-
Andrés et al., 2022) is not accounted for. An assessment
of the effects of these approximation is beyond the scope of
this work, and will be addressed elsewhere. Nevertheless,
we believe that in the present context of a national-scale
application of the code, the approximations are largely
justified — mostly because the major role, here, is played
by the triggering mechanism of rockfalls.

Output of the computer program is rockfall count, a raster
map whose values represent the number of intersections
of rockfall trajectories with the local topography, in each
grid cell. The output assumes a probabilistic meaning,
because (i) the code contains random variations of input
parameters drawn from probability distributions at each
simulation, and (ii) from each source location it simulates
many possible trajectories, which are all different in virtue
of the randomicity in the code. Thus, the count in one
particular location represents the relative probability of
that particular grid cell of being hit, for given sources and
conditions set by the user.

4.3 Scenarios for peak ground accelera-
tion

We adopted PGA maps obtained as in Falcone et al.
(2021) and Mendicelli et al. (2022), for two different
return times, which we considered as different rockfall-
triggering scenarios. Previous works obtained the ratio
between expected ground motion at the site of interest
and that at the outcropping engineering bedrock, known
as amplification factor (AF). The morpho-geological clus-
ters proposed by Iwahashi et al. (2018) were adopted to
generate specific AF-Vg3 correlations. In fact, morpho—
geological properties (i.e., normalized slope, local convex-
ity, and surface texture) provide useful criteria to recognize
homogeneous area for dynamic purposes (Mori et al.,
2020; Falcone et al., 2021). The polygons were useful
to group the 11,300 V g39 values and the subsoil lithologies
groups of the 35,000 borehole data logs. Additional input
data for the purpose are listed in Section 3.1.

Seismic site response analyses were performed using the
NC92So0il code (Falcone et al., 2021), based on the
equivalent linear approach in the frequency domain. The
same code was adopted for the pre—processing of site data
and post—processing of seismic site response analyses. The

software NC92Soil is a stand—alone Windows application
written in Python. At its core is the well-known code
Strata (pystrata) for the analysis of local seismic response
(Kottke et al., 2013). NC92Soil works with a graphi-
cal user interface, to run multiple parametric analyses for
professional and research activities. Inputs of the software
are underground profiles, time series and response spectra;
it performs equivalent linear site response analysis in the
frequency domain, using time domain input motions or
random vibration theory methods, and can perform both
deterministic and stochastic analysis of the site proper-
ties.

PGA maps at the level of outcropping flat bedrock,
PGA, ok, were retrieved from the seismic hazard study
provided by the INGV (Meletti and Montaldo, 2007;
Montaldo and Meletti, 2007) considering the median
values. Out of the nine return times available from INGV,
we selected 475 y for this is the typical return time consid-
ered in Italy to assess effects on residential buildings, used
in seismic microzonation studies. We also selected 975 y to
illustrate the possibility of including different return times
in the newly proposed framework.

Recurrent site conditions were defined according to seis-
mic microzonation studies (Benigni et al., 2018). Us-
ing such data, Falcone et al. (2021) performed a set
of about 30 million numerical simulations of local seismic
site response, adopting an equivalent linear approach in
the frequency domain. A total of 378 AF-V g3y relations
were obtained, using the following expression:

In(AF) = a [In(Vszo))® + b In(Vszo) + ¢, (1)
where the parameters a, b, and ¢ depend on the intensity
of the input ground motion, the geomorphological cluster,
and percentile of interest (16", 50" and 84*"). Maps of
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Figure 3: The AF-V g3 correlation, Eq. (1), correspond-
ing to the 50th percentile. PGA,.,¢x is the reference ground
motion at the ideal flat outcropping rock. The correla-
tion is illustrated for one of the 42 considered morpho—
geological clusters.
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Figure 4: The PGA maps corresponding to 475 y return time (a) and to 975 y return time (b) scenarios, in units of
g — the acceleration of gravity. In both cases, the figures show values of PGA corresponding to the 50" percentile of
the procedure described in Section 4.3. In this work, we also used values corresponding to the percentiles 16" and
84" (not shown here) to calculate uncertainty on the final rockfall hazard maps, for both return times.

amplification factors were aligned to a 50 m x 50 m grid
consistent with the Vg3o map by Mori et al. (2020).
Figure 3 shows an example of AF-V g3¢ correlation, cor-
responding to one of the 42 morpho-geological clusters.
The AF-Vg3¢ relation is non-linear, it depends on Vgzq
and on PGA, .k, i.e, the reference ground motion at the
ideal flat outcropping rock which depends on the site of
interest and on the considered return period.

It is worth noting that PGA .. is provided by INGV for
a b km x 5 km grid; hence, PGA,, for a 50 m x 50 m
grid can be obtained by interpolating INGV data. Hence,
the amplified ground shaking was obtained as the product
of the PGA, . and the AF maps. For sake of brevity,
the amplified PGA is herein named PGAL. where p is the
percentile, p € {16, 50, 84}, and the RT is the return time,
RT € {475, 975}. The PGA maps considered here are new
to this work and were calculated for the specific purpose
of inferring rockfall hazard; previous work only illustrated
AF maps, and only for the 475 y return time.

We are aware that slope seismic response (Bouckovalas
and Papadimitriou, 2005; Massey et al., 2017) is
generally more complex than the one-dimensional ground
motion studied by Falcone et al. (2021). Furthermore,
it is difficult to provide AF based on multi-dimensional
schemes and numerical simulation of seismic site response
for the entire Italian territory. Hence, AF considers the
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sole sub—soil setting in this study, and improvements to
include AF based on more complex numerical approaches
will be presented elsewhere. Moreover, bearing in mind
that topographic and stratigraphic amplifications (Assi-
maki et al., 2005) are in the range 1.0-1.4 and 1.0—
4.0, respectively, we decided to consider the only ground
shaking modification induced by the geo—lithological con-
dition.

Figure 4 shows PGA maps corresponding to 475 y return
time and 975 y return time scenarios. In both cases, the
figures show values corresponding to the 50" percentile
of the procedure described in this section. In this work,
we also used values corresponding to the percentiles 16"
and 84" to calculate uncertainty on the final rockfall haz-
ard maps, for both return times, as explained in the next
section.

4.4 Seismic of rockfall

sources

triggering

The main novelty introduced in this work is a mechanism
to combine information from static, time— and trigger—
independent potential rockfall sources, with scenarios for
peak ground acceleration due to seismic shaking. This
allows devising probabilistic maps of seismically—-induced
rockfall sources, linked to a given return time, correspond-
ing to the return time associated with the selected PGA



scenarios.

The general idea behind the method introduced here is the
intuitive assumption that an earthquake hitting a rockfall-
prone area would trigger a larger number of landslides in
locations experiencing larger values of PGA, relative to
areas with smaller PGA values (Valagussa et al., 2019;
Massey et al., 2014). This idea is implemented, here,
by (i) adopting a static map of potential rockfall sources,
solely obtained from data—driven morphometric considera-
tions, which identifies rockfall-prone areas, and (ii) using a
well-defined function of PGA values to selectively activate
static sources, with probability dictated by the magnitude
of a PGA map. The method can be summarized in a sim-
ple way by defining a triggering probability as a function
of slope angle S and PG A, as follows:

Ptrigger(sa PGA) = static(S) FRT(PGA) ) (2)
where Psatic(S) denotes the probability of a grid cell of
being a rockfall source as a function of slope (i.e., the
source map developed by Alvioli et al. (2021) and ex-
tended here to the whole of Italy), and Frr(PGA) is an
increasing, monotonic function of PG A values, such that
0 < Frr(PGA) < 1, and RT denotes a specific choice of

return time.

The Psitic(S) map is defined as follows:

0 S<a,

Pstatic(s) - { (3)

b (S/90)" S >a,

where the parameters a and b were obtained from sam-
ple source areas mapped by expert geomorphologists, as
described in Alvioli et al. (2021).

The procedure makes use a relatively small set of ob-
servation to infer a probability as a function of slope
with a small number of parameters (Eq. (3)). Alvi-
oli et al. (2021) carefully selected representative loca-
tions, and mapped polygons of potential rockfall sources
in an expert way. They took care in surveying the whole
slope unit containing the representative locations. This al-
lowed to estimate the probability of sources as a function
of slope, by taking the ratio of the distribution of slope
values within the mapped polygons to the distribution of
slope values within the whole slope unit. The collection
of such ratios for many slope units allows obtaining the
parameters in (Eq.