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Assessment of earthquake‑induced 
landslide inventories 
and susceptibility maps using 
slope unit‑based logistic regression 
and geospatial statistics
Badal Pokharel1*, Massimiliano Alvioli2 & Samsung Lim1

Inventories of seismically induced landslides provide essential information about the extent and 
severity of ground effects after an earthquake. Rigorous assessment of the completeness of a landslide 
inventory and the quality of a landslide susceptibility map derived from the inventory is of paramount 
importance for disaster management applications. Methods and materials applied while preparing 
inventories influence their quality, but the criteria for generating an inventory are not standardized. 
This study considered five landslide inventories prepared by different authors after the 2015 Gorkha 
earthquake, to assess their differences, understand the implications of their use in producing landslide 
susceptibility maps in conjunction with standard landslide predisposing factors and logistic regression. 
We adopted three assessment criteria: (1) an error index to identify the mutual mismatches between 
the inventories; (2) statistical analysis, to study the inconsistency in predisposing factors and 
performance of susceptibility maps; and (3) geospatial analysis, to assess differences between the 
inventories and the corresponding susceptibility maps. Results show that substantial discrepancies 
exist among the mapped landslides. Although there is no distinct variation in the significance of 
landslide causative factors and the performance of susceptibility maps, a hot spot analysis and 
cluster/outlier analysis of the maps revealed notable differences in spatial patterns. The percentages 
of landslide‑prone hot spots and clustered areas are directly proportional to the size of the landslide 
inventory. The proposed geospatial approaches provide a new perspective to the investigators for the 
quantitative analysis of earthquake‑triggered landslide inventories and susceptibility maps.

Preparation of landslide inventories after a triggering event is a fundamental procedure to analyze and assess 
ground effects in the area hit by an  earthquake1,2, providing information on the extent and magnitude of the 
landslide  event3. Landslide hazard and risk assessment depend on landslide inventory maps (LIMs)4, as does 
the statistical study on the spatial distribution of landslides and susceptibility  assessment5. The consistency of 
the inventory maps is dependent on their  quality6. The completeness of inventory, the mapping unit used to 
classify landslide susceptibility, and the sampling balance between inventories are primary factors governing 
the reliability of landslide susceptibility maps (LSMs)7. Conclusive criteria to generate LIMs of earthquake-
induced landslides have never been  formalized8. However, studies exist about methods to reduce errors during 
photointerpretation procedures 9 and about standards to properly select images for the  purpose10. Therefore, a 
careful analysis of completeness of inventories, and the quality of LSMs based on the inventories, can determine 
the degree of the usefulness of the inventories for various applications.

Standard criteria to define the quality and completeness of the inventories have not yet been established, 
partially due to the inadequacy or lack of  metadata6,11. Nevertheless, some attempts have been made to assess 
the completeness of the inventories connected with the same earthquake  event12,13. Existing studies suggest that 
the common methods of comparing inventories are based on visual analysis and statistical approaches. At the 
same time, there has been no rigorous analysis aimed at understanding the inventories of the same earthquake 
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event but generating different LSMs. This paper focuses on performing a statistical and geospatial comparative 
analysis on the inventories and the LSMs obtained from the inventories using the standard classification methods.

Landslide susceptibility maps contain information on the relative spatial probability for landslides occur-
rence, depending on terrain conditions and the overall setting of  area14. In general, LSMs may be prepared 
using qualitative and quantitative  methods15,16. While qualitative methods determine the susceptibility level 
in a descriptive form based on the expert’s judgement, quantitative methods apply mathematical and statisti-
cal relationships between the landslide occurrence and predisposing factors for assessing the probability of 
landslide  occurrence17,18,18 for earthquake-triggered landslides. The available literature suggests that, although 
many quantitative methods have been widely used to prepare  LSMs15, there is no standard method to do so. A 
multi-variate quantitative method known as logistic regression (LR) is a data-driven and practical approach to 
analyze the presence or absence of  landslides18. LR has been commonly used to assess the landslide occurrence 
probability and study event-based  landslides14,19.

The selection of an appropriate digital elevation model (DEM) is an essential step in preparing quantitative 
 LSMs20. The choice of independent factors, particularly the morphometric parameters derived from DEMs, influ-
ences the accuracy of  LSMs21. The optimization of the factors can help enhance the accuracy of the susceptibility 
 models22. Furthermore, the selection of the mapping unit for LSMs is vital because the accuracy of the data must 
match the partitioning of the mapping  unit23. Grid cells are primarily used to evaluate and assess landslide sus-
ceptibility, but they neglect the physical boundaries of slopes. Instead, slope units (SUs) are closely related to the 
geological and topographic environment and are more suited for landslide zonation  studies24–26. The devastating 
earthquake of magnitude 7.8 at Gorkha, Nepal, in 2015 and its aftershocks triggered nearly 25,000 landslides in 
the central Nepal  Himalayas27. In this study, we analyzed five landslide inventories prepared manually after the 
Gorkha Earthquake 2015. First, we performed a quantitative comparison on these inventories by calculating an 
error index and analyzing landslides’ distribution patterns with respect to the earthquake epicenter and major 
thrust systems, to reveal apparent differences. Second, we assessed the differences associated with morphometric 
factors by applying different sampling techniques to calculate their statistical significance, followed by calculat-
ing the performance of susceptibility maps generated within LR using these explanatory variables. Third, we 
applied geospatial analysis to investigate variations in the spatial clustering of the susceptibility with respect to 
the different inventories. The paper is organized as follows: Sect. 2 describes the available data, particularly the 
five landslide inventories analyzed here. Section 3 describes the methods adopted for the comparison, both of 
inventories themselves and of the corresponding LSMs. Results are presented and discussed in Sect. 4. Section 5 
draws conclusions of this study.

Data
The epicenter of the Gorkha Earthquake 2015 is located nearly 80 km northwest of Kathmandu Valley, 28.23° N 
latitude and 84.73° E  longitude28. Earthquake aftershocks were scattered in the upper section of the anticlinorium 
system of the main central thrust (MCT)29. The strongest aftershock of magnitude 7.3 occurred on May 12, 2015, 
in the Dolakha district, approximately 140 km east of the mainshock  epicenter28. Fourteen districts in the central 
Nepal Himalayas were the worst affected by the earthquake. Many  scholars30–33 have conducted studies on the 
size, spatial distribution, landslide susceptibility and damage assessment with the aid of satellite images. A few of 
them prepared landslide inventories immediately after the earthquake, while others were compiled afterwards. 
The researchers applied different techniques for the preparation of their inventories.

We investigated five existing inventories over the impacted region produced by Zhang et al.34, Gnyawali 
et al.32, Roback et al.33, Kargel et al.31, Pokharel and  Thapa35 at different times after the earthquake event. These 
five inventories are referred to as Inventories A, B, C, D and E, respectively. The overlapping region of the five 
inventories covers a section of Rasuwa, Nuwakot and Dhading districts (Fig. 1 and Table 1). It occupies an area 
of 1948  km2

, where elevation ranges from 356 to 7916 m. It comprises most of the Trishuli River watershed.
The five inventories considered in this work are as follows.

Inventory A. Zhang et al.34 mapped landslides triggered by the mainshock and aftershocks sequence. They 
used Gaofen-1 and -2 images and delineated 2645 landslides, represented by polygons in the inventory, employ-
ing pre-event and post-event analysis from the satellite images.

Inventory B. Gnyawali and  Adhikari32 produced a comprehensive polygon-based landslide inventory of 
17,638 landslides in central Nepal (20,500  km2) using high-resolution optical satellite images available from 
Google Earth (GE). They considered landslides triggered by the main shock and aftershock sequence, occurred 
before the beginning of the next major monsoon.

Inventory C. Roback et al.33 used very high-resolution satellite images, including DigitalGlobe WorldView-2 
and -3, with a spatial resolution ranging from 30 to 50 cm. Most of the images were acquired between May 2 
and May 8, 2015, in the Greater and Lesser Himalayas of China and Nepal. They mapped 24,915 polygons cor-
responding to landslides triggered by the earthquake between April 26 to June 15, 2015, in central Nepal.

Inventory D. Kargel et al.31 implemented satellite-based techniques to investigate the landslides in the dam-
aged region of central Nepal and Tibet. They used high- and medium-resolution satellite imagery (DigitalGlobe, 
NASA imageries, Landsat 8, WorldView, and others). Additional secondary data from media, photographs taken 
by locals, and helicopter-based assessments were also used. The inventory consists of 4312 point-like landslide 
locations.
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Inventory E. Pokharel and  Thapa35 used 1.5 m pan-sharpened SPOT-5 satellite images acquired before Aril 
2015 and freely available satellite images available after April 2015 to prepare a polygon-based landslide inven-
tory in Rasuwa district (1544  km2), including 1416 polygons. Most of the landslides were delineated using the 
images acquired in May 2015, before the monsoon.

Figure 1.  Map of the study area showing the extent of inventories considered in this work, overlapping region, 
earthquake epicenter and major thrust systems; thrust system modified after  Stocklin36. The base layer is “World 
Topograhic Map” available as ArcGIS Online basemap (https:// www. arcgis. com/). The map was created using 
ArcGIS version 10.8.1 (https:// www. esri. com/).

Table 1.  Details of landslide inventories in an overlapping region considered in this work. Inventory D 
contains point locations of landslides; hence the landslide area is undefined.

Inventory Number of landslides Number of unstable SUs Landslide area  [km2] Landslide area (%)

A 2075 198 4.11 0.47

B 1780 143 9.92 1.15

C 2118 132 14.57 1.69

D 371 204 – –

E 359 74 10.92 1.26

https://www.arcgis.com/
https://www.esri.com/
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Methodology
This work aims at performing a pairwise comparison among the landslide inventories to highlight their dif-
ferences and their role in landslide susceptibility mapping within the LR method. The overall methodology is 
illustrated in Fig. 2 and consists of five steps: (1) calculation of a straightforward comparison index; (2) charac-
terization of inventories with the distance of individual landslides from the epicenters and faults; (3) delineation 
of an SU map and characterization of each SU with morphometric and ground shaking variables; (4) calculation 
of SU-based LSMs for each inventory in the overlapping region and (5) calculation of SU-based LSMs in con-
siderable substantially larger extent, for polygon-based larger inventories. Details of the five steps are as follows.

Step 1. An overlapping region among five inventories was considered to perform the comparison. The error 
index EI proposed by  Carrara37, and recently used by Alvioli et al.38 and Fiorucci et al.10, helped quantitatively 
comparing pairs of inventories in the overlapping region. The index is a quantitative estimate of the difference 
between two polygon-based inventories in a specific geographical region. It is defined as follows:

where A∪ is the area occupied by either of the two inventories (individual landslide polygons), while A∩ is the 
area in common between the two inventories. Meena and  Piralilou12 used a similar method. In Eq. (1), the 
symbols ∪ and ∩ represent the spatial GIS union and intersection, respectively; thus, they have spatial meaning 
and are meant to compare the pair of inventories under investigation pixel by pixel. The resulting error index EI, 
thus, is zero for two exactly overlapping inventories (i.e., if each polygon is exactly overlapping), and it is equal 
to unity for two completely non-overlapping inventories.

Step 2: We calculated the distance of individual landslides from the epicenters of the mainshock and of the 
biggest aftershock, from the Main Central Thrust (MCT) and the Main Boundary Thrust (MBT). We plotted the 
frequency (normalized histograms) of such values for all the inventories in the common area, and for the three 
larger inventories in the extended area.

Step 3: We adopted the r.slopeunits software developed by Alvioli et al.39 and the optimization algorithm of 
Alvioli et al.40 to generate an SU map that covers all of the inventories. The total number of SUs on the map is 
91,947. The software r.slopeunits is a GRASS GIS module and is freely available (http:// geomo rphol ogy. irpi. cnr. 
it/ tools/ slope- units). All the morphometric variables referred to in this work were calculated from the Cartosat-I 
DEM, at 30 m resolution. A freely available dataset published by the United States Geological Survey (USGS) 
was utilized to obtain the dynamic (ground-shaking)  variables41.

Step 4. Landslide susceptibility assessment consists in classifying each mapping unit with a probabilistic index 
based on the knowledge of a dependent variable (here, landslide presence/absence) and a set of independent 
variables. Such classification can be conducted using many statistical and/or machine learning approaches such 
as LR, weight of evidence, frequency ratio, neural network, random forest, and  others42–44. Logistic Regression 
is widely used to assess the spatial relation of landslide and their casual  factors45–47. Hence, we selected LR to 
obtain LSMs corresponding to the five inventories considered in this study.

The relation between the occurrence of the phenomenon and independent variables is given  by45:

(1)EI =
A∪ − A∩

A∪

,

Figure 2.  An illustration of the steps performed in this work to compare different inventories and the 
corresponding LSMs (cf. Section 3).

http://geomorphology.irpi.cnr.it/tools/slope-units
http://geomorphology.irpi.cnr.it/tools/slope-units
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where p is the chance of phenomena (here, probability of landslide occurrence) and z is a linear combination of 
independent variables (here, predisposing factors). The linear combination in Eq. (2) reads as follows 45:

where b0 is the intercept of the linear model, bi (i = 0, 1, 2, …, n) represent the slope coefficients of the regression 
model and xi (i = 0, 1, 2, …, n) represent the independent variables (i.e., landslide predisposing factors).

Each SU was characterized by the presence or absence of landslides from each of the five inventories and 
descriptive statistics (mean and standard deviation (S.D)) of independent morphometric  variables7,48,49 (Table 2). 
In addition, we considered landforms classes obtained with the r.geomorphon software in GRASS  GIS50. Ridge, 
spur, slope, and hollow were selected as the landform classes, and we characterized each SU with the percent-
age of each class. The morphometric variables used here have direct interpretation regarding their impacts on 
landslide  occurrence7. Following Tanyas et al.7, we did not include thematic variables such as land use and/or 
geology in the LR classification. We cannot clearly explain their effect because we did not distinguish between 
different kinds of landslides.

Dynamic variables of the problem are ground-shaking parameters, for which we calculated average values 
within each SU as well. Specifically, we used peak ground acceleration (PGA), peak ground velocity (PGV) and 
modified Mercalli intensity (MMI). These variables, at variance with morphometric variables used in this work, 
are specific to the earthquake  event7.

Classification of each SU using LR, within the overlapping region for all the five inventories, and within the 
larger extent shown in Fig. 3 for the three larger inventories, required a training step and a validation step. Train-
ing and validation were performed using two independent (different) samples, i.e., two subsets of the SU map.

To train the LR model we obtained, for the overlapping region, the smallest number among the stable and 
unstable SUs among all the inventories and generated the training samples as follows. This corresponds to 74 
unstable SUs, dictated by Inventory E. A random selection of 75% of such unstable SUs and an equal number of 
stable SUs for each landslide inventory represented one instance of the training sample. The random selection 
was repeated 20 times for each inventory to obtain a range of results. LR was applied to the 20 training samples 
using the glm() function (an implementation of the generalized linear model) within the R language. Then, to 
calculate the p-values for the independent variables, we run a χ-square test in the 20 training runs. Moreover, 
we run a pairwise collinearity test among the variables and ones with a value larger than 0.7 in the correlation 
matrix were discarded (S.D of VRM and mean of profile curvature).

The significant landslide predisposing factors were analyzed using p-values for each inventory in the common 
region. We calculated the area under the curve of the receiving operating characteristic (AUC ROC) for each train-
ing sample and performed pairwise validation between the inventories on an independent sample. The validation 
sample consisted of 20 runs with randomly selected slope units of the second inventory of each pair, as for the 
training step. For each training and validation run, we calculated the mean and standard deviation of AUC ROC.

In addition, the success rate of the LSMs in the common area was examined by calculating AUC ROC for 
each inventory by training the LR model them with three different strategies. The first strategy (TR1): for each 
inventory, we selected 70% of stable (or unstable, whichever was smaller among all inventories) slope units and 
an equal number of unstable (or stable) as a training sample, and the remaining 30% as a validation sample. 
The second strategy (TR2): we selected the smallest number between stable and unstable slope units to train 
the LR model. Specifically, the total number of stable and unstable slope units for Inventory E are 319 and 1338, 
respectively. Hence, the training sample contained 319 stable and 319 unstable SUs, for all the inventories. Third 
strategy (TR3): all the SUs in the map were used as the training sample; no validation is implied. The sampling 
with strategies TR1 and TR2 were repeated 20 times to obtain a range of results.

(2)p =
1

1+ e−z
,

(3)z = b0 + b1x1 + b2x2 + · · · + bnxn,

Table 2.  List of independent variables as studied in Tanyas et al.7 and adopted here. We mentioned the GRASS 
GIS modules used to calculate each variable at grid cell level, from which mean and S.D were subsequently 
obtained at SU level.

Type Independent variables GRASS GIS module, or reference

Dynamic PGA USGS41

Dynamic PGV USGS41

Dynamic MMI USGS41

Static Slope r.slope.aspect

Static Topographic Wetness Index (TWI) r.topidx51

Static Vector ruggedness measure (VRM) r.vector.ruggedness52

Static Local relief r.neighbors50

Static Landform classes r.geomorphon50

Static Plan curvature (PlanC) r.slope.aspect

Static Profile curvature (ProfC) r.slope.aspect
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Step 5: Inventories A, B and C were used to prepare LSMs in the larger area shown in Fig. 3, while the two 
smaller inventories, D and E, were neglected in this step. We adopted the LAND-slide Susceptibility Evaluation 
(LAND-SE) software by Rossi and  Reichenbach49, making landslide susceptibility zonation easy; we selected the 
LR method for this step of the four possible classification methods contained in the software. Thus, we obtained 
three LSMs, i.e., a probabilistic landslide susceptibility value for each SU.

Eventually, we applied three geo-statistical tests on the LSMs obtained from the larger inventories. The first 
test evaluated the basic statistics: mean and standard deviation. The second test compared the Pearson and 
Spearman’s correlation. The third test aimed at a geospatial analysis with Cluster and Outlier Analysis (Anselin 
Local Moran’s I) and Hot Spot Analysis (Getis-Ord Gi*). Getis-Ord Gi*, a family statistic introduced by Getis and 
 Ord53, have been used by scholars to determine spatial patterns. For example, to detect extremely slow-moving 
landslides, Lu et al.54 introduced Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) 
and applied Getis-Ord Gi* statistics to run this approach. They evaluated the clustering level of Persistent Scat-
terers. The  literature55–57 shows that GIS-based applications like hotspot analysis (Getis-Ord Gi*), and cluster and 
outlier analysis based on Anselin local Moran’s I, can be used as a tool to produce groups/clusters using spatial 
autocorrelation at the local level. In this study, the goal was analyzing the clustering pattern of susceptibility, 
represented by a single value in each polygon and each map. We considered the three LSMs pairwise for these 
geospatial tests and subtracted their values in each SU as A-B, B-C and C-A,  respectively58. This implies the 
comparison values range from − 1 to 1.

Results and discussions
Error index. Table  3 lists values of the error index, Eq.  (1), for the overlapping region of polygon-based 
inventories: error indices are greater than 0.5 for all pair of inventories, denoting relatively poor overlap between 
all of the inventories. Figure 4 shows two details of the area, to illustrate the different mapping styles of different 
authors.

In general, mismatches among the inventories may occur for several reasons, e.g., the difference in scales of 
base maps, the study’s objective, type of photographs or satellite images used, the extent of a field study, skills 
of the interpreter,  etc9–11,59. Xu et al.60 emphasized the quality of landslide inventories influenced the volumetric 
analysis of earthquake-triggered landslides resulting in substantial errors in their calculation. Valagussa et al.61 
reported uncertainty in the landslide volume calculation of the Gorkha Earthquake triggered landslides related 
to the quality and completeness of the inventories. The images used by Inventory C were of very high resolution 
(30–50 cm), and they were acquired right after the event and before the monsoon, which implies that the images 

Figure 3.  Extent of the three larger inventories (A–C). The underlying elevation is the Cartosat DEM (https:// 
bhuvan. nrsc. gov. in). The map was created using ArcGIS version 10.8.1 (https:// www. esri. com/).

https://bhuvan.nrsc.gov.in
https://bhuvan.nrsc.gov.in
https://www.esri.com/
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were free of cloud coverage. The areal extent surveyed by the authors is greater than the other four inventories. 
The larger number of landslides is not necessarily a conclusive criterion to assess completeness of an inventory. 
In manual or semi-automatic delineation, the interpreter might misjudge the barren/non-landsliding region as 
landsliding. The mismatch in the sample locations in Fig. 4, and the results of the error index in Table 3, sug-
gest that the authors might have considered landslide bodies in different ways, for one or more of the reasons 
hypothesized above.

Distance from epicenter and thrusts. We have presented normalized histograms (frequencies) of the 
distance of individual landslides from the mainshock epicenter, most significant aftershock epicenter, and MCT 
within the overlapping area of the five inventories considered in this work (Fig. 5). Inventory A has the highest 
peak of landslide frequency (> 0.12) for the mainshock, in the distance range 45–50 km. The peak for Inventory 
C and Inventory E falls in the same distance range. On the other hand, Inventory B and Inventory D show a peak 
at 60 km from the mainshock epicenter. For the aftershock, the maximum frequency of landslides for Inventory 
D is in the distance range 70–75 km, whereas for all of the remaining inventories the peak lies in the distance 
range of 85–90 km.

All the inventories, except Inventory D, have the highest number of landslides clustered in the distance range 
3–5 km from MCT, whereas Inventory D does not show a clear peak. The frequency for Inventory D is high 
in about 0–2 km and 10–12 km from MCT. The overall trend shows that the number of landslides decreased 
gradually with the increase in distance. Inventory A does not show a clear peak in the frequency plot of distances 
from MCT, in Fig. 5.

We looked at similar plots for three larger inventories (Fig. 6). Both MCT and the MBT as a reference thrust 
system. MBT was not included in the overlapping region because it was far off. Inventory B and Inventory C show 
the maximum frequencies in the distance range 100–150 km from the mainshock epicenter. For Inventory A, 
there is a very high frequency in the distance range of 20–30 km. The peak for this inventory is distinctly high in 
comparison with the other two. The difference in the peak frequency (at the distance range of 100–150 km) for 
Inventory A is similar for the aftershock epicenter. Inventory B does not show a specific peak, whereas, for Inven-
tory C, the maximum frequency lies near the epicenter of aftershock. For both MBT and MCT, the overall trend 
of graphs for all the three inventories is similar. Landslides are clustered closer to MCT as compared to MBT.

The frequency plots of distance from epicenter and major fault systems, limited to the overlapping region, do 
not show substantial differences except for the case of Inventory A. The research team who mapped Inventory 
A focused on the region close to and around the event’s epicenter, for a very distinct rise exists in the number of 
landslides in this area. This supports the statement that inventories may differ from each other depending on the 

Table 3.  Error index defined in Eq. (1), after Carrara et al.37, Alvioli et al.38 and Fiorucci et al.10, calculated 
for the four polygon-based inventories in the overlap region. A smaller error index denotes better spatial 
agreement between the corresponding pair of inventories.

Inventory A Inventory B Inventory C

Inventory B 0.8 – 0.73

Inventory C 0.87 0.73 –

Inventory E 0.9 0.85 0.86

Figure 4.  Landslides mapped (examples in two figures) by different authors after the Gorkha Earthquake. The 
satellite image is SPOT-7, taken on May 03, 2015, provided by AIRBUS DS. Inventory (A–C) are available on 
https:// www. scien cebase. gov/ catal og, Inventory D is available on https:// rds. icimod. org/. and Inventory E was 
prepared by the first author. This figure was created using ArcGIS version 10.8.1 (https:// www. esri. com/).

https://www.sciencebase.gov/catalog
https://rds.icimod.org/
https://www.esri.com/
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objective of mapping. The dense cluster of landslides near the main central thrust (MCT) implies that the thrust 
system near the epicenter (here, MCT) is highly prone to landslides. This is supported by the studies conducted 
by Nepal et al.62 and Shrestha et al.63.

Significance of causal factors and success rate. As explained in Step 4 (cf. Section 3), boxplots in 
Fig. 7 help show the results of p-values associated with each inventory, stemming from the 20 runs of LR trained 
with different random selections of SUs. VRM (S.D) and profile curvature (S.D) were discarded following the 
collinearity test. The variables with p-value less than 0.5 were considered as significant factors. Slope (mean) fol-
lowed by ridge landform were substantial for most of the inventories. This implies that slope is very relevant for 
earthquake-induced  landslides64, as expected. The summarization of p-values of variables for each inventory is 
given in Supplementary Table S1.

As mentioned in Step 4 (cf. Section 3 and Fig. 2), AUC ROC values for all the inventories were plotted with 
three different sampling strategies (Fig. 8). The colored boxes in the figure represent the TR1 strategy (70% of 
the smallest number of stable or unstable SUs in each inventory as training sample and the remaining 30% in 
validation sample, 20 random selections). Grey boxes in Fig. 8 represents TR2 (smallest number of stable/unsta-
ble SUs across all of the five inventories, and the equal number of unstable/stable for training, the remaining in 
validation; 20 random selections) case and the dotted line represents TR3 case (all of the SUs to train the LR; 

Figure 5.  Relative frequency of landslides distance from the mainshock epicenter (left column), from the 
aftershock epicenter (center column) and the main central thrust (right column), for the overlapping region of 
all the inventories (A–E) considered in this work (cf. Figure 1).

Figure 6.  Relative frequency of landslides distance from the mainshock epicenter (top row, left column), from 
the aftershock epicenter (top row, right column), the main central thrust (bottom row, left column) and from 
the main boundary thrust (bottom row, right column). Plots correspond to the larger extent of the three bigger 
inventories considered in this work (cf. Figure 3).
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thus, no validation and no variability of the results). For TR1, the Inventory A (mean of distributions ~ 0.85 for 
training and ~0.80 for validation) outperforms the rest of the inventories. The validation performance value of 
Inventory B and E is smaller than 0.70, while for the others it ranges in 0.73–0.79. There is not much variance 
in the results for TR2 (0.80–0.85). For TR3, the performance is highest for Inventory E (approximately AUC 
ROC = 0.80), and other inventories share similar values (0.73–0.75).

Pairwise validation of the LSMs from different inventories does not show distinct differences (Table 4). In 
most cases, for an individual inventory, the value of AUC ROC is excellent when validation is performed using a 
sample extracted from the other inventories. Unlike our previous  work64, the performance of the LSM obtained 
by applying LR does not show a dependence on the size of landslide inventory. We ascribe the difference in 
results to the use of relatively large SU polygons in Pokharel et al.64 and an optimized SU map containing much 
smaller polygons. Large SUs may have a reduced discrimination power to distinguish the presence/absence of 
many landslides highly clustered in space. This also implies that the quality of the base mapping unit (here, slope 
unit) affects the reliability of susceptibility maps.

The values of AUC ROC calculated from the different LSMs adopting different sampling techniques were also 
shown to have different average values and variability. All these points further exhibit that preparation of a 

Figure 7.  Significance of the different variables in terms of the p-value in LR, obtained from 20 iterations of 
the general linear model for each landslide inventory, initialized with corresponding random selections of the 
training sample. The horizontal dashed line represents the significance threshold adopted here (0.05).

Figure 8.  Boxplots showing AUC ROC values for the five inventories in the overlap region considered in this 
work (cf. Figure 1). Boxplots in color correspond to training/validation strategy TR1; grey to TR2; dotted lines to 
TR3; see Sect. 3 for a description of the different strategies.
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landslide inventory is a subjective process. Henceforth, the derived LSMs are subjective as well and depend on 
many factors. Another possible source of differences in LSMs is the statistical or machine learning method used 
to calculate susceptibility values and classify the mapping units into susceptibility classes, which was not studied 
here since we only adopted LR. Moreover, Bordoni et al.59 emphasized that, for event-based landslide susceptibil-
ity (e.g., rainfall), the susceptibility distribution depends on the landslide type and mapping techniques. In the 
inventories considered for this study, there is no differentiation in the types of landslides (shallow or deep-seated) 
and landslide zones (depletion and deposition area).

In addition, we stress that, considering five independently produced landslide inventories, we effectively 
performed a real validation—pairwise validation of LSMs produced by any of the inventories, validated four 
other independent inventories. This is seldom considered in the literature, because it is fairly rare to have data 
to support actual validation data: it is much more common to split all of the available data, typically collected 
at one time by the same method and investigator, into training and validation datasets—as we did, for example, 
to prepare Fig. 8.

Comparison of landslide susceptibility maps (LSMs). We prepared LSMs for three larger inventories 
(A, B and C), shown in Fig. 9. The range of possible landslide susceptibility (LS) values is [0,1], consistently with 
the interpretation of LS as a (relative) probability. Visual analysis shows that map B has the largest LS range. The 
high LS area has a more significant extent in map B, whereas the low LS area has a larger extent in map C. Table 5 
lists the general statistical comparison; mean and S.D. Table 6 lists the values of the correlation between each pair 
of LSMs is performed using Spearman’s and Pearson’s correlation.

As mentioned in Step 5 (cf. Section 3), for each pair of maps, one map was subtracted from the other to 
perform geospatial analysis. The results of the hotspot analysis of individual maps are presented in Fig. 10 and 
Table 7. The relevant results of this analysis for subtracted maps are shown in Supplementary Table S2.

Table 4.  Pairwise validation among five inventories in the overlapping area. The table presents the mean 
with one standard deviation confidence level for the AUC ROC obtained from each testing/validating pair, with 
20-fold random selection.

Validated by inventory

A B C D E

Trained with Inventory

A 0.78 ± 0.03 0.80 ± 0.03 0.82 ± 0.03 0.82 ± 0.04 0.80 ± 0.02

B 0.83 ± 0.03 0.74 ± 0.01 0.80 ± 0.03 0.71 ± 0.02 0.80 ± 0.03

C 0.83 ± 0.02 0.77 ± 0.02 0.74 ± 0.03 0.77 ± 0.02 0.79 ± 0.02

D 0.88 ± 0.03 0.81 ± 0.03 0.81 ± 0.03 0.71 ± 0.03 0.80 ± 0.03

E 0.83 ± 0.03 0.78 ± 0.03 0.80 ± 0.03 0.78 ± 0.03 0.77 ± 0.02

Figure 9.  Landslide susceptibility maps obtained within the LR model for the three larger inventories (A–C) 
considered in this work (cf. Figure 3). 0 and 1 represent lowest and highest value of LS respectively. The maps 
were created using ArcGIS version 10.8.1 (https:// www. esri. com/).

Table 5.  General statistics of landslide susceptibility values, described in Sect. 3, for the LSMs from the three 
larger inventories considered in this work (cf. Figure 3); S.D stands for standard deviation.

Inventories Mean S.D

A 0.013 0.037

B 0.045 0.094

C 0.057 0.105

https://www.esri.com/
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None of the maps shares common characteristics of the hot spot and cold spot clusters. Map B has the largest 
hot spot cluster among the individual maps, and map A has the largest cold spot cluster. More than 60% of the 
area in map C belongs to non-significant clusters, which varies noticeably in the other maps. The variance is 
explicit in the clusters among the subtracted maps as well.

Cluster and outlier analysis was performed with the same criteria as a complement to hot spot analysis, 
presented in Fig. 11 and Table 8. The high and low clusters result overlap with that of the hot spot. The non-
significant area for this analysis is largest for map C, like in the hotspot analysis. As for the subtracted maps of 
hotspot analysis, a clear difference is observed between high cluster and low cluster in cluster and outlier analysis 
(Supplementary Table S3).

The general statistical comparison of LSMs from the three larger inventories shows that map from Inventory 
C, the largest, has the highest average value (0.05) of LS and standard deviation. However, the correlation coef-
ficients are greater than 0.9 for all three cases (Table 6). On the other hand, the clustering analysis results show 
that map from Inventory C occupies the largest area among all inventories for “high cluster”. Map from Inventory 
A occupies the smallest area for the hot spot, cluster/outlier analysis. The non-significant area is large for map 
from Inventory A, which might be due to fewer mapped landslides. Overall, the geospatial analysis exhibits that 
the information to assess LSMs can be gathered by comparing LS values among maps obtained from different 
inventories. Further, the comparison can be facilitated by generating the hotspot clusters. The only use of statisti-
cal tests overestimates the correlation between the inventories and the performance of LSMs.

Table 6.  Spearman’s and Pearson’s correlation coefficients between the three pair of LSMs from larger 
inventories A, B and C.

Inventories

A vs. B A vs. C B vs. C

Spearman’s correlation 0.9936 0.9976 0.9952

Pearson’s correlation 0.9322 0.9217 0.9907

Figure 10.  Hotspot analysis of LSMs for three inventories (A–C). Percentages represent confidence level, as 
produced by the hotspot analysis. The maps were created using ArcGIS version 10.8.1 (https:// www. esri. com/).

Table 7.  Results of hot spot analysis, described in Step 5 (cf. Section 3). For each map, corresponding to an 
individual inventory, we list the percentage of slope units in each hot spot class. The percentages in the “Result” 
column represent the confidence level.

Results

Inventories

A B C

Hot Spot 99% 0.004 15.1 1.1

Hot Spot 95% 6.4 23.5 2.1

Hot Spot 90% 16.3 10.3 9.0

Not Significant 62.9 31.6 13.2

Cold Spot 90% 1.2 1.2 15.3

Cold Spot 95% 2.0 2.2 26.1

Cold Spot 99% 11.14 16.9 33.2

https://www.esri.com/
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Conclusions
Landslide inventories are the primary data source to prepare susceptibility, risk, and hazard zonation. Quality 
and completeness of an inventory are crucial parameters to be considered while implementing any zonation, 
but no standard technique exists to assess them. In the case that different inventories exist for a given area and/
or a given triggering event, one can obtain LSMs generated from the inventories using the same independent 
variables and the same classification method. Comparison of LSMs is useful to understand how differences in 
the inventories themselves propagate to derivative maps.

In this study, five inventories prepared independently after the Gorkha earthquake by different geomorpholo-
gists were compared. The availability of these inventories allowed to conduct a thorough comparison among 
their contents and LSMs obtained thereof, using LR. Results of the study helped in outlining a) the statistical 
mismatches among the inventories and the reasons behind that, b) subjectivity in preparing landslide invento-
ries and derived LSMs, and c) the importance of geospatial analysis in establishing the differences in the LSMs 
derived from different inventories prepared for the same event. This work can help researchers in prioritizing 
the objective of mapping and preparing LSMs based on earthquake events.

Results obtained in this study support the following conclusions:

 i. Landslide inventories are descriptive products prepared by collecting data from aerial photographs, satel-
lite images, field surveys. Hence, they are influenced by the quality of those data and the purpose of the 
effort. LSMs based on general-purpose inventories are not effective. Objective-based inventory prepara-
tion, possibly distinguishing landslide type, has the potential of improving the quality of LSMs.

 ii. Selection of landslide predisposing factors and mapping unit to prepare LSMs are two critical steps. The 
performance of the LSMs also depends on different sampling techniques of training/validation samples 
and the availability of optimized mapping units—here, slope units.

 iii. The results of hot spot, cluster and outlier analysis show that “high cluster” is dominant in the map from 
inventory with the highest number of landslides (Inventory C), whereas “non-significant” is dominant in 
the map from smallest inventory (Inventory A). The implication is that insufficient data might contribute 
to false or less reliable outputs. Hence, compilation of landslide inventories requires complete mapping, 
in the surveyed area.

In this work, the availability of several, independent landslide inventories for the same geographical area and 
the same triggering event allowed us direct comparison of the inventories themselves, and of susceptibility maps 
obtained from them. Though the availability of such multiple datasets is not a very common situation, it allowed 
us to show that the propagation of differences from the inventories to derived maps is not trivial, and it would 
be very difficult to spot in absence of an independent benchmark, and by simply calculating AUC ROC values. 

Figure 11.  Cluster and outlier analysis of LSMs for three inventories (A–C). LL: a cluster of low values, HL: 
high outlier, LH: low outlier, HH: a cluster of high values. The map were created using ArcGIS version 10.8.1 
(https:// www. esri. com/).

Table 8.  Results of cluster and outlier analysis, for individual maps, described in Step 5 (cf. Section 3). The 
number represents the percentage.

Results

Inventories

A B C

Not significant 31.8 28.2 27.1

Cluster: High 10.5 15.6 14.8

High Outlier 0.1 0.3 0.1

Low Outlier 1.6 1.7 1.6

Cluster: Low 56.0 54.2 56.4

https://www.esri.com/
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The implication is that removing the subjectivity and attention to completeness in compilation of inventories is 
of paramount importance. Geospatial analysis provided a broader perspective, in combination with statistical 
tests, for the quality assessment of earthquake-triggered landslide inventories.
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