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Abstract— We present an improvement of image classification by 
“thresholding”, using topographic information to determine 
multiple thresholds. We devised a two-steps procedure for 
automatic classification into landslide or no landslide categories of 
a change-detection map obtained from satellite imagery. 
Requirements of the proposed procedure are knowledge of the 
occurrence of a landslide event, availability of a pre- and post- 
event pseudo-stereo image pair and a digital elevation model. The 
novel feature of the approach is represented by the use of slope 
units as topographic-aware subsets of the scene within which we 
apply a multiple thresholding method to classify a landslide class 
membership tuned on the sole landslide spectral response. The 
method is fully automatic after site-dependent operations, required 
only once, are performed, and exhibits improved classification 
performance with limited training requirements. Our automatic 
procedure is a step forward towards systematic acquisition of 
landslide events and real-time landslide mapping from satellite 
imagery. 

I.  INTRODUCTION 

The most effective source of information describing a 
landslide event extension and magnitude in a given region is an 
event landslide inventory map (eLIM). An eLIM is a key input to 
derive landslide hazard and risk maps, and its preparation require 
effective monitoring and fast, cost-efficient mapping tools. More 
in general, despite their importance, landslide inventory maps 
cover a limited extension of the landslide-prone areas across the 
global landmass [1,2].  

Landslide inventory maps are best prepared by visual 
interpretation of stereoscopic aerial images [3]. In the last two 
decades the images captured by high resolution and very high 
resolution optical satellites [1,4,5], and synthetic aperture radar 
[4,6], are becoming a viable replacement of aerial photographs, 
encouraging research efforts in the direction of developing 
automatic and semi-automatic classification algorithms to 

distinguish different land covers, including vegetation, urban 
areas, water bodies and landslides. Use of LiDAR data for 
automatic landslide mapping is beyond the scope of this work, 
mainly because it is not suitable for use within the approach 
described here, and will not be discussed.  

Automatic and semi-automatic landslide mapping require 
image classification methods, including supervised and 
unsupervised clustering [7,8], and index thresholding [5,9]. 
Supervised classification calls for a manual training process 
which can result difficult and time consuming. Reducing the time 
and the overall effort required to prepare an eLIM, while 
increasing the level of automation of the mapping procedure, are 
key issues to obtain a reliable estimate of the extent and 
magnitude of landslide events on a routinely basis. 

In this work, we focus on a classification method which 
assigns individual pixels to the generic bare soil class, with a 
spectral fingerprint corresponding to event landslides [10].  We 
use a Bayesian-based maximum likelihood (ML) approach to 
assign each pixel either to the “landslide” or “no landslide” land 
cover classes by thresholding, the simplest existing decision rule. 
The procedure requires to single out a numerical value 
(threshold), among all the values in the image, and to assign the 
pixels values above (or below) the threshold to a particular class 
[11]. We used thresholding to classify a change detection (CD) 
function, obtained from a combination of widely used change 
detection indices tuned on landslide spectral response. In 
particular, we devised a multi-threshold approach that takes 
advantage of the topographic information contained in a slope 
unit (SU) subdivision of the area under investigation 
[12,13,14,15]. Using a custom classification threshold within 
each slope unit allows to overcome limitations posed by the 
different geometric conditions, dictated by the combination of 
satellite point of view, sun position, slope orientation and 
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inclination. Such conditions can be considered homogeneous 
within typical individual SUs, while they pose limitations when 
the CD function values are classified using a single threshold. A 
large number of false negatives and false positives are inherently 
introduced by a single threshold. On the other hand, 
misclassifications may be strongly reduced using multiple 
thresholds. 

II. METHOD AND RESULTS 

Our method to automatically identify the pixels belonging to 
the landslide land cover class relies on the concept of a CD 
function, denoted here and in Ref. [5] as gls (“ls" stands for 
“landslides"), obtained with a simplified ML classifier. Figure 1 
summarizes the method developed in Ref. [5], illustrating the two 
basic steps, updated in this work. 

 

Figure 1.  The algorithm proposed in Ref. [5], and updated in this work, applied 
upon knowledge of the occurrence of a landslide event. Step 1: calculation of the 
discriminant function; step 2: three different classification possibilities by index 
thresholding, resulting in three different eLIMs (cf. Section II). The table 
describes the level of automation of the individual operations involved in each of 
the two steps. A: one-time, site-dependent operations; B: operations that can be 
optionally performed again in a new study area; C: fully automatic operations, to 
which we added “Riverbank Mapping” in this work, with respect to Ref. [5]. 

In the first step, we define the function gls whose values 
represent the ML distance of each pixel from the landslide class, 
providing a pixel-by-pixel measure of the presence or absence of 
new landslides. The gls function is obtained measuring changes 
occurred between a pre- and a post-event image, using three 
different metrics: changes of NDVI [16], Spectral Angle (SA) 
[17,18,19] and Principal Component Analysis (PCA) [18]. The 
three metrics were combined in a single image stack of changes 
for the analysis.  

In the second step, a map is generated by evaluating the gls 
function in each pixel of the study area. Then the gls map pixels 
are classified as “landslide” or “no landslide”, either by: (i) 
thresholding the gls values, i.e., selecting as landslides the pixels 
with gls values larger than a single threshold value over the whole 
study area; (ii) using multiple threshold values, within square and 
rectangular subsets of the gls map; (iii) as in (ii), but replacing 
regular subsets with irregular SU polygons, thus introducing local 
geomorphological information. 

In the first step, the innovative feature is represented by the 
fact that we only aim at defining the landslide class, thus we only 
need to train the procedure once. In the test case of Ref. [5], the 
calibration area was selected in only one (big) landslide, for a 
total of 421 pixels (about 10,000 m2 out of about 1,000 km2) in 
the stack of changes. 

In the second step, the core innovation of the procedure is the 
application of thresholding gls values within a large number of 
subsets of the study area, singled out either with and without a 
topographic information. Existing thresholding approaches use a 
single threshold, necessarily reducing accuracy, while SU 
provide local topography information and allows to find local 
custom thresholds. 

The proposed method was tested in an area of about 1,000 m2 
in Myanmar, where torrential rainfall triggered extensive 
landslides in 2015, including the massive Tonzang landslide and 
the large number of fatalities [21].  

Figure 2 shows histograms of the values for the CD 
discriminant function gls. A distinctive feature of the global 
histogram, Fig. 2(a), is a bi-modal behavior, characterized by a 
small peak around gls = 0, overwhelmed by a broad peak 
containing the vast majority of pixels with spectral properties 
dissimilar from the landslide ones. The two peaks (modes) are 
separated by a well-defined local minimum, occurring at some gls 
value denoted as M. The first approximation to a binary 
classification of the gls values is to flag as “landslide” the pixels 
with M < gls < 0, and to flag as “no-landslide” the remaining 
pixels. 

The next approximation we discuss consists in tracing a grid 
onto the gls map, calculate a histogram of the values of gls for 
each rectangular polygon singled out by the grid (cf. Fig. 2(b)-
(e)), and process the histogram with the automatic, non-
parametric mode detection software of Ref. [18], implemented as 
standalone program. Depending on the number and values of the 
separations between different modes found by the software, we 
developed an algorithm to determine custom thresholds to be 
applied within the single polygons we introduced. 
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Figure 2.  (a): histogram of the gls function values over the whole study area. (b-
d): four sample histograms of the gls values, corresponding to four individual 
slope units. The vertical lines represent the divide between different modes, if 
any. The mode located right from the divide may be due (e), or may not be due 
(d), to pixels with spectral behavior very similar to pixels known to be within the 
landslides selected for the training procedure, by construction of gls. 

 
The third and last approximation is to replace the rectangular 

polygons with topography-aware slope units. SU were delineated 
using the automatic software of Ref. [12], using a portion of 
ASTER digital elevation model, and are shown in Fig. 3 for the 
calibration study area (about ¼ in size of the whole area). The 
number and size of SU were chosen maximizing agreement of 
the automatic classification with an eLIM prepared by expert 
geomorphologists, by photo-interpretation, in a calibration 
region. The method was then extended to a different, and wider, 
validation region. Visual interpretation and gls analysis were 
performed on a 5m x 5m RapidEye stereo-pair. 

 

 
Figure 3.  (a): the SU subdivision of the calibration area, in the calibration 
subset of our test area located in Myanmar (see Ref. [5] for details). (b): red 
pixels denote the automatically-mapped landslide inventory, eLIMSU (cf. Fig. 
1), obtained with multiple thresholds within the SU polygons shown in (a). 

 

In this work, we added an additional level of automation with 
respect to the work in Ref. [5]. The comparison between 
automatic and expert mapping was performed everywhere but on 
pixels corresponding to rivers. We automated riverbanks 
mapping using a pixel-based method [10,23], thus making the 
overall method fully automatic after site-dependent operations, 
required only once, are performed. Such operations are listed in 
Fig. 1. 

We report results of the three different approximations (also 
reported in Ref. [5]), expressed in terms of an error index EI, first 
introduced in Ref. [12] and recently employed as a benchmark 
for selecting optimal requirements of images from remote 
sensing for landslide mapping [22]. Results for “grid” and “SU” 
are obtained with a number of polygons that minimizes EI in both 
cases. Results are listed in Table I. The percentage gain of multi-
thresholding with respect to the “global”, single-threshold results, 
are calculated as (EI

SU
 - EI

global)/EI
global, in the SU case, and 

correspond to 8.1% in training and 4.8% in validation.  
Eventually, we replaced riverbanks mapped by visual 

interpretation with a riverbank layer mapped automatically and 
calculated EI in the training area using the new layer; results are 
listed in Table I as well. The percentage gain using SUs (7.7%) 
is comparable to the results obtained with visual mapping of 
riverbanks (8.1%). 

 
Table I. Numerical results from the comparison of eLIMs obtained with global 
thresholding and with grid-based and SU-based multi-threshold presented in this 
work and Ref. [5]. 
 
Riverbanks 

mapping 
 Training  Validation 

Visual 
EI 0.369 0.344 0.339  0.512 0.510 0.487 

Gain - 6.7% 8.1%  - 0.4% 4.8% 
 

Automatic 
EI 0.401 - 0.370  - - - 

Gain - - 7.7%  - - - 

III. DISCUSSION AND CONCLUSIONS  

The topography-driven, multi-threshold approach to 
landslide mapping from satellite imagery proposed in Ref. [5], 
and updated in this work, presents several advantages.  

The numerical results of the comparison of the automatic 
mapping procedure with the ground-truth of an eLIM prepared 
by visual interpretation (Table I) reveal that the topographic-
aware subdivision of the territory allows for a better 
classification performance both than thresholding applied 
globally, or within a topographic-blind subdivision. This is 
particularly true in the validation area, where the grid-based 
method shows little gain (0.4%) with respect to the global 
thresholding method.  
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In second place, we substantially simplified image 
preparation with respect to existing land cover classification 
methods using remote sensing. Considering the only “landslide” 
class reduces the time and effort needed to train the algorithm to 
distinguish the spectral response of landslides.  

In third place, once the preliminary steps of SU delineation, 
gls training and calibration of thresholds are performed, the 
procedure is fully automatic, including the detection of 
riverbanks, left out of our previous work [5]. Class assignment is 
automatic and it does not require a-posteriori identification of 
the different classes. Figure 1 contains a table describing the 
different levels of automation of the various actions required to 
achieve multi-threshold classification.  

In preparing the gls function map, we combined three indices 
embodying both radiometric (ΔNDVI and SA) and geometric 
(PCA) information contained in satellite images, to account for 
the heterogeneity showed by the spectral response of landslides 
[19,24]. Further developments may include different indices, in 
the discriminant function preparation, or additional topographic 
drivers [25]. The method can be used on a routinely basis, and 
run whenever the occurrence of a new landslide event is 
otherwise detected with specialized methods [6,23]. 

In conclusion, we argue that the improved performance and 
limited training requirements of the classification procedure 
represent a step forward towards an automatic, reliable real-time 
landslide mapping from satellite imagery. 
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